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1. Summary 

This report summarizes efforts to enhance our knowledge of the dynamic processes 
associated with injectors in liquid rocket engines. Progress has been made on a number of 
fronts. Linear stability analyses have been performed to assess the wavelengths of 
instabilities in ox-rich staged combustion (ORSC) injector elements. Most unstable 
wavelengths have been characterized over a wide parameter space to provide researchers with 
an understanding of drop sizes shed from fuel films in these injector elements. 

The dynamics of classical swirl injectors have been investigated for both single and dual 
tangential inlet channel designs. The use of multiple inlet channels is believed to lead to 
wave cancellations in the chamber, thereby reducing injector response to perturbations 
imposed from the combustion chamber. Existing theoretical/linear models have been 
modified to handle the multi-channel design and show substantial reduction in injector 
response over a range of frequencies. Companion nonlinear calculations are also in work for 
both single and dual channel designs. For both cases, it appears that nonlinear effects reduce 
overall amplitude of the response as compared to the linear theory. 

Work has continued on a comprehensive primary atomization model that relies on no 
empirical inputs. With recent parallelization of our boundary element codes, we are now able 
to simulate more and more complex and dense sprays and are able to compute drop statistics 
(Sauter Mean Diameter) from first principles in a unique nonlinear simulation. 

Related work has been conducted in drop splashing as a result of capabilities built up to 
assess primary atomization physics. Numerous archival publications have resulted from the 
efforts: 

Archival publications (published) during reporting period: 

1. Yoon, S. S., and Heister, S. D., "A Nonlinear Atomization Model Based on a 
Boundary Layer Instability Mechanism," Phvsics of Fluids, VI6, No.l, pp. 47-61, 
2004. 

2. Yoon, S. S., and Heister, S. D., "A Fully Nonlinear Model for Atomization of High- 
Speed Jets," Engineering Analysis with Boundary Elements, V28, pp 345-357, 2004. 

3. Yoon, S. S., and Heister, S. D., "Categorizing Linear Theories for Atomizing Jets," 
Atomization and Sprays, VI3, pp.499-516, 2003. 

4. Kim, B-D, and Heister, S. D., "Two-Phase Modeling of Hydrodynamic Instabilities in 
Coaxial Injectors," J. Propulsion and Power, V20, pp 468-479, 2004. 

5. Yoon, S. S., and Heister, S. D., "Analytic Solutions for Computing Velocities Induced 
from Potential Vortex Ring," International J. for Numerical Methods in Fluids. 
44:665-672, 2004. 

6. Xu, C, Heister, S. D., and Blaisdell, G. A., "Simulation of Cavitated Flow in Orifices 
Fed by a Manifold," Atomization and Sprays, V14, pp 37-52, 2004. 

7. Austin, B., Heister, S. D., and Anderson, W. A., "Development of Pintle and 
Splashplate Injectors for Nontoxic, Storable, Hypergolic Bipropellants," J. Propulsion 
and Power, V21, No.4, pp. 627-635, 2005. 



8. Kim, B-D, and Heister, S. D., "Three Dimensional Flow Simulations in Recessed 
Region of a Coaxial Injector," J. Propulsion and Power, V21, No.4, pp. 728-742, 
2005. 

9. Park, H., Yoon, S.S., and Heister, S.D., "A Nonlinear Atomization Model for 
Computation of Drop Size Distributions and Spray Simulations", /////. J. for 
Numerical Methods in Fluids, 48:1219-1240, 2005. 

10. Park, H. and Heister, S.D., A Numerical Study of Primary Instability on Viscous 
High-Speed Jets, Computers and Fluids, V35, pp. 1033-1045, 2006. 

11. Corpening, J. H., Heister, S. D, and Anderson, W.A., On the Thermal Decomposition 
of Hydrogen Peroxide, Part II: Modeling Results", J. Propulsion & Power, Vol. 22, 
No. 5, pp. 996-1005, 2006. 

12. Park, H., and Heister, S. D., "Nonlinear Simulation of Free Surfaces and Atomization 
in Pressure Swirl Atomizers", Physics of Fluids, Vol. 18, 052103, 11 pages, May, 
2006. 

13. Park, H., Yoon, S. S., and Heister, S. D., "On the Nonlinear Stability of a Swirling 
Liquid Jet", Intl. J. of Multiphase Flow, to appear, 2006. 

14. Macdonald, M., Canino, J. V., and Heister, S. D., "On the Nonlinear Response of 
Plain Orifice Injectors", to appear, AIAA J. Propulsion & Power, 2007. 

15. Park, H., Yoon, S. S., Jepsen, R. A., and Heister, S. D., "Droplet Bounce Simulations 
and Air Pressure Effects on the Deformation of Pre-Impact Droplets Using a 
Boundary Element Method", Engineering Analysis with Boundary Elements, 2007. 

Technology Transfer 

The research group at Purdue is supporting a variety of developments throughout the 
industry. Under NASA sponsorship, models that were initially created in the AFOSR 
program are being used to assess the forced response of plain orifice "pressure atomizers" 
under a wide range of conditions. The models are being incorporated into the industry- 
standard Rocket Combustor Interactive Design (ROCCID) code that is used by NASA MSFC, 
U.S. Air Force, and numerous propulsion contractors. The models will substantially improve 
the basic treatment of these atomizers and the Purdue team is working closely with Sierra 
Engineering on implementation of the new models. Results from current AFOSR-sponsored 
efforts in the dynamics of swirl injectors has also been transmitted to NASA officials as well 
as prior simulations of shear coaxial injectors that are of great interest for new Crew 
Exploration Vehicle propulsion. Our team works closely with small companies including 
Sierra Engineering and INSpace LLC to provide recommendations on injector designs. We 
have also provided inputs on gas/gas injectors for potential application to lunar transfer 
vehicles under sponsorship from entities affiliated with Kistler Aerospace. Currently, we are 
working on nonlinear dynamics of swirl injectors and hope to be able to create a submodel 
for ROCCID that would incorporate these results and permit the code to assess a whole new 
class of injectors. A comparable submodel for shear and swirl coaxial injectors is also under 
development under NASA sponsorship, although this is a rather low-level effort at present. 



2. Research Objectives 

The understanding of the complex combustion phenomena present in liquid rocket engines 
begins with the fundamental process of fuel and oxidizer jet atomization. The objective of 
this research has been to develop a series of models, incorporating increasingly complex 
physics, to assess the role of atomization in the combustion instability process. The models 
have centered on the use of Boundary Element Methods (BEMs) as a means to provide 
accurate description of these complex, nonlinear processes under arbitrary unsteady 
conditions. The models have demonstrated a capability to have calculations proceed beyond 
atomization events. 

While the basic BEM techniques are inviscid, recent development of a zonal model using 
an integral method for boundary layer modeling, permits a full viscous capability. This 
model, described in Appendix A of this report, is the first primary atomization model to 
provide accurate, fully nonlinear treatment of atomization processes under full-scale 
Reynolds numbers consistent with actual engine conditions. While these BEM simulations 
have been useful in describing parent surfaces of modest complexity, other techniques are 
required to resolve dense sprays formed in many rocket injection processes. For this reason, 
we have embarked on the development of a viscous, unsteady, nonlinear model capable of 
addressing flows in which large numbers of droplets are present. 



3. Status of Research 

Table 1. Assumed     Baseline 
Atomizer Simulations 

Radius to Center of Tangential Chn, a„ 
Radius of Nozzle, a 
Radius of Vortex Chamber, Rv 

Radius of Tangential Channel 
Length of Tangential Channel 
Length of Nozzle, L„ 
Length of Vortex Chamber, /,,, 
No. of Inlet Channels 
Inlet Velocity  

= 3.226 mm 
= 2.151 mm 
= 4.234 mm 
= 0.643 mm 
= 1.516 mm 
= 1.500 mm 
= 4.547 mm 
= 4 
= 17.50 m/s 

3.1 Nonlinear dynamics and drop sizes from swirl injectors 

In prior work, we compared nonlinear steady-state computations with the linear theory for 
a variety of parametric injector designs including the baseline geometry summarized in Table 
1. Results were generated for various grids thereby demonstrating convergence and accuracy 
of the model. These grid tests showed no discernable difference in core radius, film thickness, 

_ r      c- • .     velocities, and jet half angle, for the 
Geometry     tor     Swirl J ° 

meshes studied from ds = 0.020 to 0.040 . 
Computed film thicknesses also show 
excellent agreement with experimental 
results   and   limited   comparisons   of 
computed   drop   sizes  with   measured 
data show good agreement. A typical 
number   of   nodes   that   evolve    for 
subsequent calculations is 250 nodes 
with the grid space of ds = 0.032 but the 
number of points increases with time up 

to 900 nodes due to increased jet length. In addition, the simulation time for a dynamic 
response computation takes typically about 2 weeks on the 1.0 GHz Athlon CPU used in the 
modeling. 

The   steady-state   results   show 
surprisingly little nonlinear effects 
and the core radius, nozzle exit film 
thickness, and jet half angle were 
nearly     identical     for    both    the 
nonlinear calculation and the linear 
theory for a wide range of designs. 
The one exception to this result is 
for nozzles that are short; in this 
case the linear theory tends to over 
predict  the  spray  half angle  and 
under   predict   the   film   thickness 
relative to the model calculations. 
Table    2.    shows   the   extent   of 
agreement between the two BEM 
calculations      (using      perturbing 
inflow velocity and the other using 
pulsating        chamber        pressure 
incorporating Ref. 18 for solution at 
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Figure 1. A 2-D axisymmetric grid system used to model a swirl 
injector. 

interior nodes) and the linear theory for the baseline conditions summarized previously. The 
minor differences between them are attributed to the limitations of the methods employed in 
calculating these parameters and to the accurate calculation of fluid properties at interior 
nodes rather than the difference in the specified boundary condition. This is further 
confirmed, as will be discussed in a later section, by the fact that the change in core radius in 
the vortex chamber due to fluctuating chamber pressure is negligible compared to the 
thickness of the liquid film. 



Table 2. Calculated result comparison against the theoretical result of V.G. Bazarov10 

Theoretical result BEM (perturbing 
inflow) 

BEM (perturbing chamber 
pression 

Core radius (r„) 0.707 0.705 0.706 
Film thickness (/;) 0.200 0.205 0.204 
Half spray angle 45° 45.5° 45.5° 
Total 
Velocity 
(m/s) 

Nozzle entrance - 20.7 (at wall) 
11.7 (at free surface) 

20.5 (at wall) 
11.6 (at free surface) 

Nozzle exit - 24.3 (at wall) 
21.0 (at free surface) 

24.3 (at wall) 
21.03 (at free surface) 

Outside injector 36.09 36.12(2 = 5.04, 
r = 2.78) 

36.10(2 = 5.04, 
r = 2.78) 

Axial 
Velocity 
(m/s) 

Inlet channel 17.50 17.50 17.50 
At nozzle center 17.37 17.45 17.51 
Outside injector 26.26 26.26 26.3 

A. Static Characteristics Analysis 

The geometry provided in Table 1. served as a baseline condition for the computations. In 
a steady chamber pressure condition, the radial/axial velocity profiles on both upper and 
lower fluid surfaces are compared against theoretical values in Fig. 2. Results tend to 
asymptotically approach the quasi-1-D theoretical values as one moves far away from 
corners. Figure 3 also shows the free surface shape inside the injector as well as the final jet 
shape (at t' = \2) with shed droplets. The liquid core evolves naturally as a part of the 
calculation as does the cone angle formed by the conical sheet exiting the orifice. Under 
steady flow conditions, the shed droplets are moving in the same direction as the parent jet 
and their size distribution is almost constant. The computed flow properties for the steady 
injection case result in an SMD/a of 0.185, and a cone half angle of 46° with other statistical 
properties summarized in Table 3. 

Figure 4 provides a 3-D visualization of the spray evolution and the jet core structure. The 
breakup length is nearly constant after /* = 5.0 and shed droplets are tracked downstream with 
the direction angle of the parent jet. The overall spray is qualitatively similar with that of 
actual experimental images. The initial ligament pinching events lead to droplets that are 
dispersed somewhat from the final cone angle formed by the spray. This is an artifact of the 
initial conditions selected for the simulation and not necessarily representative of the chaotic 
startup observed during the chamber filling process of a real device. 

Table 3. Statistical properties for a swirl injector 

Properties 
SMD/a 0.185 
ND 1741 
Do/a 0.198 
uD/U 1.21 
vD/U 1.26 

M°) 45.8 
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Figure 2. Radial (left) and axial (right) velocity profile along fluid surface in a classical swirl injector. 
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Figure 3. Final jet shape showing shed droplets for baseline swirl injector, at 
r* = 12.0. 



Figure 4. Dimensional view of the final jet shape computed for baseline 
conditions noted in Table 1 

B. Behavior under Dynamic Injection 

The dynamic response was studied for the injector geometry described in Table 1. at the 
baseline injection velocity and pressure drop of 17.5 m/s and 0.69 MPa respectively. To 
compare results against the theoretical analysis of Bazarov & Yang, the velocity was 
interrogated at a variety of locations in the film. Figure 5 shows locations for dynamic- 
response analysis in our calculation. The detailed locations are as follows: 

Pt 1: C/inP: 

Pt 2:c/Chamb: 

rt J\ L/noz,entr- 

rt *f. Unozexjt. 

Pt5:f/out: 

z = 0.258, r = 2.665 ( at the channel inlet) 
z= 1.495, r= 1.968 ( at the chamber wall) 
r = 2.113, r= 1.000 ( at the wall of nozzle entrance ) 
z = 2.798, r= 1.000 ( at the wall of nozzle exit) 
z = 5.036, r = 2.789 ( outside the nozzle ) 

z/a 

Figure 5. Selected locations for dynamic response analysis 
in a classical swirl injector. 

variations,   while 
oscillations. 

the   former  approach  is  more 

Two distinct approaches have 
been used for simulation of unsteady 
flow conditions. Initially, we utilized 
a forced excitation via oscillation of 
the inlet massflow. Since the 
dynamics of the film thickness in the 
vortex chamber could lead to large 
amplitude surface waves, this 
process can in principle give results 
substantially different from the case 
where the gas pressure in the vortex 
chamber was oscillating in time. For 
this reason, a second approach was 
also investigated wherein the 
oscillation was imposed via an 
unsteady pressure in the vortex 
chamber. This latter approach is 
more realistic for dynamics induced 
by combustion chamber pressure 

representative   for  feed  system  based 



1. Dynamic Massflow Simulations 
The dimensionless time in the computational domain is t' =U/a-t, so the dimensionless 

oscillation wave number (m') for actual oscillation frequency (/) is as follows: 

m' =—m = —2xf=2A5]E~3x27txf = 1.1229E-4xf (3.1) 
U        U 17.5 J 

Then, for a given input oscillation frequency, the injection velocity is pulsation can be 
written: 

F(m')= Asm(m't') (3.2) 

where A is the amplitude of the massflow pulsation. In our study, the disturbance is 
prescribed as a fluctuation of the inflow velocity in the tangential channel, Eq. (3.2), or as 
perturbation of chamber pressure as seen in Eq. (3.3). 

AP = APs,ca6y+£sm(a)t) (3.3) 

In addition, the inlet for the tangential channel is assumed as the circular cylinder in our 
axysimmetric simulation and its area is determined to have the same mass flow rate with the 
actual injector. In order to keep the constant area for the same mass flow rate throughout the 
tangential channel, the channel width at the tip and the root can be calculated: 

R 4/?" 
WT,*> = o \ WT-"""•where Wr-• = ^r (34) 

2. Dynamic Chamber Pressure Simulations 
Here, the unsteady pressure drop across the film in the vortex chamber must be ascertained 

in order to determine the instantaneous pressure drop across the tangential channels. From the 

radial momentum equation, ^ = 77^, where for the potential vortex: VO=T^ • After 

integration, the dimensional pressure drop across the liquid film can be computed: 

AIT- prn 1 

IC2    R, 8/r2 

So that the nondimensional pressure drop can be written: 

Afl-Jlf-L--! 
8;r2   ft2    R, 

(3.5) 
c ) 

(3.6) 
c J 

Substituting nondimensional circulation r = 2nRinv0 = 2nRl„vi„ we obtain: 

2    \R}„     Rl)      2 \R\      ) 

Assuming a constant stagnation pressure in the manifold and neglecting viscosity losses, 
Bernoulli's equation gives the pressure drop across the inlet channel: AP2 = T- • 

So the total pressure drop across the injector is the sum of pressure drops across the liquid 
film and inlet channel: 



AP = AP>=AP2=^-£ (3.8) 
2 Ac- 

Knowing this pressure drop the inflow velocity can be computed as: 

Vin=42AP— (3.9) 
Rin 

Where the overall pressure drop in the system is assumed to be a sinusoidal function of 
time AP = A/ieady + esm(a>t). The steady state pressure drop is calculated from the initial 

conditions: 

Afl-*=^=^ (3.10) 

Figure 2 shows a typical computational grid employed in the studies. The initial pressure 
drop is computed from Eq. (3.1) based on the steady state solution for the core radius using 
constant inflow rate. This pressure drop plus perturbation is further converted to massflow on 
the inlet boundary using Eq. (3.2). 

C. Simulations Assuming Forced Mass Flow Pulsations 

A series of simulations were conducted using the unsteady massflow methodology 
outlined in Eqs. (3.1)—(3.4). An initial simulation was performed with a 10% massflow 
fluctuation ( A = 0.1 ) at a frequency of 5000 Hz. At lower frequencies, the dynamic simulation 
can require long integration times in order to build up statistical properties for drop sizing. In 
order to save computational cost, this simulation was restarted from the steady state solution 
obtained at the time of /*=5.0 and integrated in time until quasi-periodic behavior was 
obtained. The input and nozzle exit velocity histories are overlaid for the period 10 < t" < 20 in 
Fig. 6. The phase lag and amplitude modulation of the input signal is evident from this 
comparison. 

The dynamic response for a single cycle of the imposed oscillation is depicted at various 
points in the injector in Fig. 7. The unsteady part of the signal is plotted at each location in 
order to assess wave amplitude and phase shifts at various points in the flow path. In Fig. 7, 
the oscillation frequency and the amplitude, for the plot on the left, were set as / = 5000 Hz 
and A = 0A , respectively. The vortex chamber acts as an accumulator and changes in 
massflow cause very little variations in velocity at Pt. 2; the massflow variations lead to 
changes in the size of the vortex core in this region. At Pt. 3 (nozzle inlet), a very large lag is 
notable and the amplitude of the oscillation increases as the fluid accelerates into the 
contraction region. At the nozzle exit, the oscillation amplitude is diminished somewhat as 
the swirl velocity is increased. The signal actually appears to be leading the input at this 
location for the conditions studied—this unusual characteristic is unique to swirl injectors 
with large vortex chambers that can cause large lags in response. The amplitude of the signal 
is attenuated further at the nozzle exit and into the conical film with smaller phase lags noted 
in these regions due to the relatively shorter flow times characteristic of the nozzle and 
regions downstream. 
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The right plot of Fig. 7 shows the dynamic response for / = 1000 Hz and A = 0.1 . At this 
lower frequency, the response lags the input much more modestly, and the overall trends in 
amplitude are preserved from the 5000 Hz case. As the flow times are more comparable to 
the oscillation period in this case, the overall lag of the injector is much more modest. 

Figure 6. Raw input (left) and response (right) for initially disturbed inflow velocity; the oscillation 
frequency and the amplitude were set as / = 5000 Hz and A = 0.1, respectively. 

PI1 Inflow 
PI2 Vort»« Clumber 
PI3 Nozil. En 
PI, NozzM E>i 
PIS Oulside 

Figure 7. Dynamic response through a classical swirl injector, which was investigated in velocity 
response; the oscillation frequency and the amplitude where set as / = 5000 Hz , A = 0.1  (left), and 

/ = 1000 Hz, /I = 0.1 (right), respectively. 
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3.2 Hydrodynamic Modeling of Swirl Injectors with Multiple Rows of Tangential 

Channels 

Modified model for dual channel injector 
Consider a swirl injector with two rows of tangential injectors separated from each other 

by a distance Lx (Figure 8). We assume that the response of the tangential channels and 

nozzle are unchanged (with respect to single row of inlets) with the introduction of another 
row of inlet. Also the any modification needed due to the 'vorticity' effect in the vortex 
chamber is neglected as it is found to be negligible. However the interaction of the surface 
waves in the vortex chamber has to be accounted for. See Richardson for a detailed analysis 
of a two channel swirl injector. 

The phase shift associated with the distance between the two inlet channels Lx is given by, 

coL 
<!>,=—- (3-11) 

Where angular velocity, co = Inf and V'm is the wave velocity in the vortex chamber. 

We can use the principle of superposition to examine the influence of reflected waves in 
the vortex chamber of any arbitrary length. Let us consider an initial wave in the vortex 
chamber at inlet 'a' given by 

^=A/ (3.12) 

Where Au is the initial height of the wave due to the perturbation in the inlet 'a'. Near the 

nozzle this wave travels a distance of Lv (length of Vortex Chamber) and becomes, 

Lh = \,< ,'{(0l~ (3.13) 

Where ^.the shift angle is associated with traveling Z.v distance and  v<f>v is the reduction 

in the amplitude due to viscosity u . A part of this wave gets reflected which is given by, 

(6L=nV (a>t-#v)-u#v (3.14) 

•« —• 

a 1 I'I y 

\ 
"-, 

Lv 

Figure 8. A classical swirl injector with two inlets at locations 'a' & '!)' separated by a distance L, 

Where n is the reflection coefficient. This reflected wave changes in the following 
manner when it travels a length Lv to reach the closed end of the Vortex Chamber 

^ =nAae
l{a,'2Ahu2A (3.15) 

This wave is reflected completely from the closed end and reaches the nozzle, 
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£vn=n\/""-^]-u^ (3.16) 

The reflected wave will be, 

(U„:=n2v'(<"'-MHM (3.17) 

And so the waves reflect back and forth until their amplitudes become negligibly small. 
Using the principle of superposition we have the following wave near the closed end of the 

vortex chamber, 

^=Aa|;nV(""H^ (3.18) 

Near the nozzle, 

£* =Afl|]nV('0'-(2',+lKH2B+lK (3.19) 

Similarly we can derive equations for surface waves in the vortex chamber due to the 
perturbations in the inlet channel 'b'. 

Then, using the principle of superimposition we can compute the wave near the head end 
of vortex chamber as follows 

oo oo 

£   _ j^ y^j-j»£<(«"-2»«>v)-2'"M+yy y^ Yi"e'(""-2"^+^)-2nL)^+u^ n 201 

n=0 n=0 

Similarly near the nozzle inlet we have 
CO oo 

p       _   A     y T-TII   i(n>l-{2n+))fa)-2nu& .     V-1 j-.n   i(o(-(2n+l)A+^,)-(2«+l )u<?r+vfa (T. 1 ] \ 

n=0 n=0 

The above two equations are used in computing the response of the dual channel injector. 

A dual channel swirl injector was analyzed using the modified linear model and compared 
with computational results generated by BEM code described in section II using oscillation 
pressure boundary conditions. An injector currently being tested by Miller4 at Purdue 
University was used as basis for this study (Table 4). 

Inlet    radius    of   tangential 
channel K = 0.454 in 

Radius of nozzle K = 0.454 in 

Radius of vortex chamber ii = 0.454 in 

Radius of tangential channel *r = 0.0175 in 

Length of tangential channel LT = 0.359 in 

Length of nozzle K = 0.0 in 

Length of vortex chamber k. = 0.4767 in 

Length between two channels K = 0.0999 in 

No of inlet channels n = S 

Inlet velocity yT 
= 913        in/s 

Table 4. Design parameters of a dual channel swirl injector 
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Since the injector to be analyzed is an 'open' injector that is the radius of vortex chamber 
and nozzle being equal further modification where required to the existing model. The effect 
due to reflection coefficient n was eliminated (set to a very small value) and the nozzle 
length was set to an insignificant value. The flow was shared equally among both the inlet 
channels. 

The linear model shows a local minima around 1344 Hz (Figure 9,10). This frequency 

corresponds to the distance between the two inlets Lx = 0.1 in. The amplitude of response is 

never greater than unity; this is a feature of the 'open' injector which makes it more attractive 

BEM 

Sncfe channel 

TVAO channels 

4000 6000 8000 10000 
Frequency in H2 

Figure 9. Amplitude vs Frequency for dual channel swirl injector 

inlet EF=25%,b=75% 

irtetaF=50%,b=50% 

inlet aF=75%b=25% 

2000 3000 
Frequency in Hz 

4000 5000 

Figure 10. Amplitude vs frequency for different combinations of flow through the two 
sets of inlets 
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option over the 'classical' swirl injector. The dual channel injector is much more stable than 
the single inlet design due to the destructive interference of the surface waves in the vortex 
chamber. The computational results seem bounded by the single and dual channel analytical 
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Figure 11. Amplitude vs perturbation 

analysis for the same design parameters. 
At low frequencies (< 1000 Hz) the interference of surface waves is more prominent 

owing to longer wavelengths and fewer waves in the vortex chamber. However at higher 
frequencies the computational model shows a diminishing effect of the two channel inlet 
probably due to decreasing wavelengths of the surface waves and probably the simple dual 
channel analysis seems inadequate to capture all the phenomena in the vortex chamber. Also 
the non-linear effects are not being accounted for in the theoretical model. 

The amount of mass flow rate (Fig. 10) was varied among the two sets of inlets. A 50-50 
split shows to the most stable combination with clear local minima at 1344 Hz. Other 
combinations are a little less stable than the 50-50 split and also don't show any clear local 
minima. 

Fig. 11 shows BEM results for amplitude amplification factor (ratio of outflow to inflow 
perturbation magnitudes) as a function of chamber pressure perturbations for the frequency of 
2000 Hz. As we can see even 80% perturbation causes nonlinearity of just above 5%. 
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3.3 Boundary Element Method (BEM) Acceleration using ScaLAPACK Utility 

Assuming the Runge-Kutta time integration scheme, the BEM calculation requires the 
solution of the large-dense system of linear equations for four times at every time step. 
Computational cost on solving this matrix system is fairly expensive. Current BEM codes 
developed within the research group have used LU decomposition and SOR(Successive Over 
Relaxation) to solve the large-dense matrix system. Although SOR has been a quite 
successive method for solving larger matrix systems(over 1000 nodes), it has not been fast 
enough to get the grid convergence for high Weber number jets. A small As(grid size) has 
been required to ensure the exactitude of computation in this case, so that computational cost 
of BEM based on SOR has been quite high. Therefore, it has been necessary to modify the 
matrix system solver in BEM. 

The fully populated square matrix gives BEM codes a unique characteristic compared to 
the banded structure present in classical CFD codes. Classical CFD codes usually accomplish 
the acceleration by the use of sparse matrix inversion schemes and parallelization; dividing 
the computational domain into smaller matrices that are distributed to a set of CPUs. In 
addition, BEM atomization problems are distinguished by computational domains that 
increase with time, which yields different size matrix system at every time step. In addition, 
BEM matrices for fluids problems of this nature are generally poorly conditioned, i.e. not 
diagonally dominant, thereby further complicating inversion processes. These issues make 
the matrix inversion in BEM fluids codes quite challenging. To improve performance of 
current codes, the ScaLAPACK utility was investigated as an aspect of the current work. 

Scalable Linear Algebra Package (ScaLAPACK) is a set of library for distributed memory 
MIMD(Multiple Instruction stream, Multiple Data stream) parallel computers developed by 
the ScaLAPACK project . ScaLAPACK provides routines for dense and band system of 
linear equations, linear least squares problems, and eigenvalue and singular value problems. 
The large-dense matrix system solver in ScaLAPACK implies Block and Parallel LU 
Factorization; blocked submatrices from original matrix are distributed to a set of CPUs and 
then solved by LU Factorization. ScaLAPACK accelerates BEM significantly and finally 
shows a good grid convergence for SMD(Sauter Mean Diameter). 

The test for the comparison of ScaLAPACK and prior successive overrelaxation(SOR) 
methodologies have been completed. The acceleration obtained by ScaLAPACK relative to 
SOR is shown in Fig. 12. This test is done for matrix systems obtained by test-run of BEM 
code on our current HPC(High Performance Computing) cluster which has 2.4 GHz AMD 
Opteron Quad Processors onevery computational node. As ScaLAPACK project suggests that 
the maximum performance is achieved when 1000x1000 matrix is set on one CPU, 
1000x1000 matrix system is solved most rapidly on lxl CPU. 2000x2000 matrix system 
shows best performance on 2x2 CPUs(total 4 CPUs). BEM often yields a matrix over 
2000x2000 so that it is expected that ScaLAPACK will significant advantages over SOR for 
very large problems. 

The time taken to run the entire code using ScaLAPACK has been compared to code using 
SOR. The run time of BEM code for the simulation of Rizk and Lefebvre's experiment43 is 
shown in Fig. 13. When As is 0.016, BEM based on ScaLAPACK takes 13.2 days but BEM 
based on SOR can not simulate the case due to computational constraints. Therefore, it has 
been confirmed that relatively large grid cases can be simulated within a short time relative to 
SOR with the aid of ScaLAPACK and small grid cases which can not be simulated by SOR 
can be simulated using ScaLAPACK. Figure 14 demonstrates convergence of the scheme for 
conditions consistent with Rizk and Lefebvre's experiments4 . Prior simulations with SOR 
could not get the grid convergence for SMD due to exhorbitant run times. 
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Using Ponstein's linear analysis for a rotating column, rings pinched from an axisymmetric 
computation can be fractionated into droplets to provide a quasi-3-D simulation of a spray. 
Limited prior work has shown some success using this approach with modest grid sizes. 
Figure 15 and 16 depicts some current simulations using the methodology. In the image on 
the right of Fig. 15, over 23,000 drops are produced. Approximately 80,000 drops are 
produced in the current simulation of Cousin et a/'s experiments , 3D visualization of this 
simulation is presented in Fig. 16. 

Matrix Size 
—B    250x250 
—A    500*500 

750x750 
1000x1000 
1250x1250 

-A    1500x1500 
-+    1750x1750 
0    2000x2000 

2x2 3x3 

NO. Of CPUs 

Figure 12. Acceleration by ScaLAPACK for various matrix sizes with various 
number of CPUs(tS0R is time taken by SOR, tScaLAPACK is time taken by ScaLAPACK) 

Time   7 
(day)   « 

SOR 

\ 
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1/As 

Figure 13. Run time of code for SOR 
and ScaLAPACK with various grid 
size (fromt=0 to 10s) 

SMD 

(MMO 
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Figure 14. SMD for various grid sizes with time 
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t = 5.0 s, As = 0.028 t = 5.0 s. As = 0.016 

t = 7.0 s, As = 0.028, ND = 2,700 t = 7.0 s, As = 0.016, ND = 5,400 

t = 9.0 s, As = 0.028, Nn = 8,300 
i 

\ 

Y 

L. 
- 

H 
i 

t = 9.0 s. As = 0.016, Nn ~ 23,200 

Figure 15. Variation of the flow field with time, comparison between two cases; the left 
is for As = 0.028 and the right is for As = 0.016 (ND is the number of drops. Drops produced after the 
flow field is fully developed are only included in this figure.) 
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Figure 16. 3D visualization of the simulation of Cousin et al's Injector #04 (t=10s, As = 0.016, 
ND = 80,000, The whole drops produced in the simulation are included in this figure.) 
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3.4       Boundary Element Method (BEM) Development and Dynamic Response Studies 

for Swirl Injectors 

Under AFOSR sponsorship, we are performing boundary element simulations to determine 
the nonlinear dynamic response of swirl injectors utilized in many liquid engine systems. 
Highly compute-intensive work is ongoing to determine injector massflow response 
(amplitude and phase) over a wide range of pulsation conditions and orifice geometries. 

This year's work was focused on the analytical revision of existing codes computing the 
dynamic response of swirl injectors of a typical design shown on Figure 17. 

Figure 17. A classical swirl injector noting nomenclature used for design variables 

Since no experimental evidence exists on how the pulsations of mass flow rate at the 
injector inlet or of the combustion chamber gas pressure correlate with the pulsations of mass 
flow rate at the exit orifice, work by Bazarov is used as the only available reference for 
validation of BEM results. Bazarov's theory is linear and is based on the assumptions that the 
flow has essentially a free vortex distribution of tangential velocities, is incompressible and 
inviscid. It predicts that two types of waves should exist on the vortex free surface. The first 
type results from the fact the film adjusts its thickness to accommodate the fluctuating 
incoming mass of liquid. The second type results from the idea that as the inlet velocity or the 
back pressure is changed, the different layers of liquid start to rotate with different speeds. 
The centrifugal forces associated with this process cause the slower moving particles to move 
towards the vortex core surface and the faster ones to the walls, which generates the so called 
vorticity waves. Both types of waves propagete within the vortex chamber on the core surface 
and get refracted back and forth by the head end and contraction section walls of the vortex 
chamber, see Figure 19. Studies have shown that the vorticity waves have much stronger 
effect on the dynamic response than the first type of waves . A corresponding linear code40 

had been in use which incorporated the equations of the linear theory. Two types of injectors 
are being investigated: single channel, Figure 17, and dual channel, Figure 19. 
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Figure 18. Single channel swirl injector dynamic response due to linear theory. 

A typical correlation between inlet and exit flow pulsations produced by linear code for a 
single channel injector is shown on Figure 18. Here the response is presented as a transfer 
function 

II 
Pc/Pt 

(3.22) 

where Qn is the average mass flow rate at the exit orifice, pc is the average combustion 

chamber gas pressure and primes denote the fluctuation of these quantities given by 

II 
max[]-min[] 

(3.23) 

According to the linear theory, in the situation when two inlet channels are present, some 
distance apart, the vorticity waves generated by both inlets, start to interact, causing the 
injector response to have minimums at certain frequencies of flow disturbances . This 
phenomena occurs due to cancellation of the waves which are moving in opposite directions 
and phases, see Figure 19. The response compared to the response calculated by the BEM 
code showed that the minimums do not match. A typical comparison for the dual channel 
response for the case when chamber gas pressure is being pulsated within 37% from its 
average value is shown in Figure 20. 
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Inlet Inlet 2 

Mean Level 

Refractive Boundaries 

Figure 19. Dual channel injector schematic. 

Most recent studies have been done to find the reason for this mismatch. Several minor 
problems were found in the linear code, for example, some nondimensional parameters were 
used as dimensional, etc.. Furthermore, the graphical dual channel BEM results depicting the 
instantaneous axial and radial coordinates of the points on vortex surface, did not show any 
apparent occurrence of the surface waves. As disturbance frequencies varied, the surface 
came to a steady flat form, similar to the static one shown on Figure 17, or close to the mean 
level shown on Figure 19. 

Total dual channel injector response 

i   0.25 

Figure 20. Dual channel response comparison between BEM and linear theory. 

In order to check if the code is responding accurately to small discrete changes of inflow 
conditions, a test was conducted where the inlet velocity was changed in the form of a single 
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pulse. Figure 21 shows the flow development consisting of the transient, steady and pulsed 
parts in terms of inlet and exit mass flow rates. The zoomed in picture of the pulse shows that 
the nozzle exit disturbance is much smaller compared to the inlet one. This also implicitly 
tells us that the amplitude of surface waves on the vortex core stays negligibly low. 

Therefore, the initial single channel version of the BEM code was revised to investigate 
the governing equations, with particular focus on the Bernoulli's equation, Table 5, which 
serves as dynamic boundary condition on the liquid-gas interface. 

One of the reasons for the decrease of surface wave amplitude is the artificial viscocity, 
given by all terms having uv and vv. In previous versions of BEM code computing non- 

swirling flows the viscocity was modelled by means of superposing a potential vortex ring on 
a uniform flow of liquid column . In the current version the viscous terms are still present in 
exactly same form. But since the flow is swirling then the way for modelling the viscocity 
should also be revised. 
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Figure 21. Inlet and exit mass flow rate responses to the pulsed inflow. 

Another  reason  for  small  amplitude  of surface  waves  is  related  to  the  main  term 
responsible for the rotation of liquid given by 

1 aQil0 (3.24) 

where a0 is the distance from injector axis to the inlet channel axis, Q0 is the angular 

velocity at a0 and r is any other radius. Here the angular velocity is computed as 

Utn(t) 
Q0 = (3.25) 
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where Uin{t) is the current inlet velocity. This means that as inlet velocity is changed, every 

infinitesimal slice or disk of liquid perpendicular to the injector axis has same angular 
velocity Q0 at a0, which causes equal free vortex tangential velocity distribution for all of 

them, see Figure 22. This corresponds to the situation when the whole liquid body would 
respond instantaneously to the change of inflow conditions. Since radial velocities are much 
lower than tangential or axial ones in a swirl injector flow, then any disturbance of the inlet 
velocity affects either tangential or axial velocities on the vortex surface. Also, the small 
magnitude of radial velocities leads to the situation that the points on the vortex core have 
approximately same radial positions and therefore, the same tangential velocity, due to 
previous reasoning. Then, in this case, the disturbance of the inlet velocity could result only 
in the the change of axial velocities of surface points, which also visually leads to the absence 
of waves. 

In reality, considering the flow is close to inviscid, each particular disk should have its 
own unique tangential velocity distribution which corresponds to the inlet velocity existed at 
the instant of time when this slice was right at the inlet, or a remembered inlet velocity. And 
each of these disks should retain its tangential velocity distribution as it moves from inlet area 
to the exit, see Figure 22. 

Conclusively, to address these issues, the current single channel BEM code is being 
modified in such a way that the viscous effects are removed, and the liquid vortex is modeled 
as a collection of disks, each having its own tangential velocity distribution. 

Dtj) _ 

Dt 

30 
dz 

+ «. 
dl 
dr 

+ v„ 

This is -(w2 +v2) part in [24, eq.(4.12)], 

where uv and vv terms come from viscous vortex ring treatment [23, eqs.(3.55)]. 

^7 
+ u.. U..+ 

30 
dr 

+ v. 

This is -ut •«,, part in [23, eq. (3.56)]. 

tfoQo 

This is —w] part in [24, eq.(4.13)]. 

+2i// —+ — 
ds    Re 

( *i dl</>    \_d<f>_ 
ds2     r dr 

These are weak viscous treatment terms from [25, eq.(7.7)]. 

D          k         B° -P + Z 8    We    We 
These are standard surface-wave problem terms [24, eq.(4.1 1 )|. 

Table 5. Term by term analysis of Bernoulli's equation. 
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Figure 22. Disk representation of liquid column. 
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Appendices 

Appendix A - Paper on Nonlinear Response of Swirl Injectors 

Nonlinear Dynamic Response Modeling of a Swirl Injector 
Renith Richardson1, Hongbok Park2, James V. Canino , and Stephen D. Heister4 

School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 47907, USA 

A fully nonlinear axisymmetric model has been utilized to characterize the 
dynamic response of a classical swirl injector and compared with the linear 
results of Bazarov and Yang. A Boundary Element Method (BEM) model has 
been developed to study the unsteady behavior under periodic inflow conditions 
or pulsating chamber pressure. The difference between pulsating the inlet 
velocity or the chamber pressure was insignificant, as the height of the wave on 
the liquid surface in vortex chamber is negligible when compared to the 
thickness of the liquid film. The amplitude response of the nonlinear model 
shows a significant deviation from the linear model after a certain frequency. A 
thorough analysis indicates that this phenomenon is dependent on the axial 
momentum of the liquid. Nonlinear effects appear to be minimal as the strong 
pressure gradients in the liquid film imposed by the swirling How lead to 
relatively small surface waves even under large excitation conditions. The 
unsteady film formed by the atomizer is also tracked beyond the exit plane to 
evaluate the periodic formation of annular ligaments which are in turn assumed 
to form droplets using the linear analysis due to Ponstein. 

Nomenclature 

A = Amplitude 
a = radius of nozzle 
a„ = radius to center of tangential chn. 
BB = Bond number 
D = droplet diameter 
ds = grid space 
FN = Flow Number 

f = Frequency 
G = Green's function 

g = acceleration due to gravity 
k = wave number 
L„ = length of nozzle 
/-, = length of vortex chamber 
ND = number of droplets 
ft in = radius to inlet channel 
R, = radius of liquid surface 
R, = radius of vortex chamber 
r = radial direction 
s = distance along the surface 
SMD = Sauter Mean Diameter 
U jet speed 

1 Graduate Student, School of Aeronautics and Astronautics, Purdue University, AIAA Member. 
" Graduate Student, School of Aeronautics and Astronautics, Purdue University, AIAA Member. 

Graduate Student, School of Aeronautics and Astronautics, Purdue University, AIAA Member. 
Professor, School of Aeronautics and Astronautics, Purdue University, 315 N. Grant Street, W. Lafayette, IN 

47907. AIAA Associate Fellow 
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u = axial velocity 
V = radial velocity 
We = Weber number 
- = axial direction 
tr = pressure drop 
i = vortex strength 

P = surface slope 

0 = direction of velocity 

On = cone half angle 

/' = density 

a = liquid surface tension 

<t> = velocity potential 

K = surface curvature 
(0 = growth rate 

Subscripts 
()o = droplet property 
a = gas property 

()/ = liquid property 
o, = total or general solution 
(), = vortex-ring property 

I.   Introduction 

A swirl injector or simplex/pressure-swirl atomizer is one of the more common devices used to atomize 
liquids. The hollow-cone simplex atomizer creates angular momentum by injecting the liquid tangentially 

into a vortex chamber. Since swirl injectors offer throttling advantages and give high thrust per element, they 
have been utilized in aerospace propulsion applications over the past sixty years. In particular, injectors of this 
type have seen substantial applications in rocket engines, particularly in engines developed in Russia. In 
propulsion applications, both static and dynamic characteristics of the injector have been of great interest to 
predict bulk performance and to understand instability mechanism related to the dynamic response of engines 
and their potential contributions or participation in combustion instabilities. 

The steady-state performance of swirl atomizers has been addressed by a number of authors. Bayvel and 
Orzechowski utilize the principle of maximum flow to solve for liquid film conditions within the injector. The 
approach has been used largely by Russian scientists and engineers studying simplex atomizers* As a second 
theory, Yule-Chinn3 used axial momentum conservation principle to derive the equations of flow for a swirl 
injector without the critical assumption of the principle of maximum flow. While the utilization of the principle 
of maximum flow and axial momentum conservation are major differences between these two linear theories, 
predictions using the two approaches generally are in agreement. 

More recently, nonlinear simulations have been conducted to assess the mean performance of the atomizers 
under a variety of flow and design conditions. Xue et al. and Park and Heister" investigated the effect of 
geometric parameters on a simplex fuel atomizer; using the Arbitrary Lagrangian-Eulerian, and boundary 
element methods (BEM), respectively. Dash et al.6 studied formation of the air core in nozzles, Bussman et al.7'8 

for pressure-swirl atomization in the near field and Han et al. for hollow-cone fuel sprays under steady inflow 
conditions. 

There have been very few works in the literature that have focused on the dynamic aspects of these injectors. 
Pioneering efforts in this area are attributed to V. G. Bazarov, who developed the initial linear treatment in the 
1970s10 and later published the work in a paper co-authored with V. Yang" in 1998. This latter contribution has 
provided a first glimpse of the complex dynamics of the simplex element for many readers in the Western 
world. 

Since the element has a gas core, it responds to the instantaneous chamber pressure as this leads to changes 
in the pressure drop through the tangential channels. Waves are formed on the free surface in the vortex 
chamber due to oscillating mass flow at the inlet and these waves are at least partly reflected from the 
convergent section leading to the nozzle and the remaining is transmitted into the nozzle. Vorticity waves; 
comprised of regions of faster and slower swirling liquid, are also developed under unsteady chamber pressure 
conditions. The linear model accounts for these mechanisms in an inherently inviscid one-dimensional treatment 
resulting in a transfer function that relates pressure pulsations in the chamber or feed system to massflow 
pulsations delivered by the element. 

In the present work, we apply an inviscid, axisymmetric BEM treatment to provide a nonlinear, 
multidimensional-flow capability for simulating swirl injector dynamics. The dynamic response of a single inlet 
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classical swirl injector is computed for a range of perturbation frequencies of the chamber pressure. Results arc 
compared against the existing linear theory and the presence of nonlinear behavior, multidimensional effects and 
other phenomena are analyzed over a variety of operating conditions. As the BEM methodology permits 
computations beyond atomization events, studies are conducted to assess ligament and droplet sizes for unsteady 
inflow conditions. The model is described in the next section, followed by discussion of results and conclusions 
made from the study. 

II.   Model Description 
Figure 1 provides a schematic of a simplex atomizer noting the fluid injection via tangential channels at the 

head end of the vortex chamber. The gas core develops naturally as a function of the vortex chamber diameter, 
inlet massflow and the degree of swirl imparted to the fluid via the pressure drop imposed from the injection 
manifold. The contraction to the nozzle facilitates acceleration and thinning of the film to provide a conical 
sheet that breaks up into a spray. Key dimensions and nomenclature are noted in Fig. 1 for application to the 
analysis and subsequent discussion. 

Reference 1 I provides a complete description of the basic model elements; only highlights will be presented 
here in the interest of brevity. An inviscid, incompressible, axisymmetric flow is presumed such that the flow 
dynamics are governed by Laplace's equation, V2^ = 0. The boundary element method utilizes an integral 

representation of this equation to provide a connection between f values on the boundary, the local geometry, 
and the local velocity normal to the boundary, q = dtp/dn , as follows: 

a<j)(r,)+\s 
on 

ds = 0 (1) 

where <fr(r,) is the value of the potential at a point n , S is the boundary of the   domain, a  is the singular 

contribution when the integral path passes over the "base point", and G is the free space Green's function 
corresponding to Laplace's equation. For an axisymmetric domain, the free space Green's function can be 
expressed in terms of elliptic integrals of the first and second kinds and is a function solely of the instantaneous 
surface geometry. For this reason, a discrete representation of Eq. (1) can be cast as a linear system of equations 
relating local <p and q values. In the discretization, both <fi and q are assumed to vary linearly along each element, 
thereby providing formal second-order accuracy for the method. Since the resulting integrals do not have exact 
solutions in this case, Gaussian quadrature is used to maintain high accuracy of integration and preserve second- 
order accuracy overall. 

While this governing equation is linear, nonlinearities in these free surface problems enter through the 
boundary condition at the interface. The unsteady Bernoulli equation provides a connection between the local 
velocity potential and the surface shape at any instant in time. Prior formulations" have provided a derivation of 
this result suitable for implementation in a Lagrangian surface tracking environment. For the swirling flow, 
modifications are required to account for the centrifugal pressure gradient created by the swirl. Without swirl, 
the dimensionless unsteady Bernoulli equation is as follows: 

D<j>     I ,,,2    ,   , K     Bo ,,, 
 = — \u,\  -u,-uv-P, H z (2) 
Dt    2'   ' We    We 

where <j> is the velocity potential and K is the local surface curvature and the Weber number 
(We = pU2 a/a ), Bond number ( Bo = pga2 /a ) become the dimensionless parameters governing the problem. 

Physically, this result is a Lagrangian form suitable for use for fluid elements moving with the local velocity of 
the free surface. The terms on the RHS of the equation include the effect of dynamic pressure, local gas-phase 
pressure, and capillary and hydrostatic pressure contributions respectively. In Eq. (2), the total surface velocity, 
u,, can be computed via a superposition of the base axial flow in the injector {</> ,i7) with a potential vortex 

{<j>, ,uv ). Letting u, v, and w represent axial, radial, and circumferential velocity components respectively, we 

may write: 

</>,=</> + $„   u,=u+uv   v, =v+v,.   w, = w+wv (3) 

Superposition of a potential vortex can be achieved by starting with the complex potential: 

31 



z = ~\og(z) 

where r is complex variable, T is vortex strength, and F is the complex potential. 
The resulting velocity components for this flow are as follows: 

r 
uv =0,    vv=0,    H; =  (5) 

Inr 

This vortex is irrotational as known since <y = Vx« = 0 , except at f = 0. Using Eq. (5), the total velocity in Eq. 
(3) can be computed; 

1  |- |2       _     _ 1 r. .,       . .,       . .,, =— [w2+V2 + W,:]-H\. -H\. 
-\u,\  -u,uv =-[(u + ur)

2+(v + vv)-+(w+wv)-] 2 (()) 

-[(u + ur) • uv +(v + vv)-v,. +(w+wv )-wv]  = — [u2 + v2] — uv2 

where 

Choosing the ideal tangential injection velocity ([/), the orifice radius (a), and liquid density (/>) as 
dimensions, the dimensionless result can be written as, 

££.ltf-Pt-JL+i°g-l<(sJ± (8) 
Dt     2' ' We    We      2 { a ) r2 

where the Weber and Bond numbers are defined as above. Since we have nondimensionalized against the 
tangential injection velocity, U, the Rossby number does not appear explicitly in Eq. (8), but the last term on the 
RHS of the equation corresponds to the circumferential pressure developed by the potential vortex. In this 
context, the radial location of the center of the tangential channel, a0, defines the dimensionless strength of the 
vortical flow. The kinematic equation for motion of points on the free surface can be expressed: 

Dz     d<t>        0 n    Dr     d(j>  .    „ 
— = —cosP-qsm/}   — = —sin/? + </cos/? (9) 
Dt     as Dt     as 

where /? is the local slope of the wave with respect to the horizontal direction. Equations (8) and (9) arc 
integrated in time using a 41 -order Runge-Kutta scheme to provide the evolution of the velocity potential and 
the motion of the free surface. 

The computational model was incorporated with oscillating chamber pressure rather than perturbing the 
inflow velocity to simulate a chamber pressure oscillation. This boundary condition will allow the mass flow in 
the inlet channels to adjust naturally to the instantaneous pressure within the vortex chamber. The pressure drop 

is assumed to be a sinusoidal function of time AP = APstcady +£ sin (cot), where steady state pressure drop is 

calculated from the initial conditions,1" where the steady state pressure drop A/Lady is calculated using initial 

conditions (Eq. 10). 

AD           -  '/"Kan"//. . uy. 
^Steady  ~—j  ( l(,> 

The mass flow rates at the nozzle exit plane can be computed using is computed using the methodology 
described in Ref. 18 is used to calculate the velocity potential and its derivatives at the interior nodes. It involves 
the development of integral equation for Green's function followed by the integration and the calculation of the 
solution for unknown values of velocity potential and its derivatives. The derivative of the velocity potential is 
then used to calculate the nozzle exit mass flow rate. 
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For long integrations or resolution of highly distorted surfaces, points on the free surface will tend to bunch 
in regions of higher curvature as a result of the free-surface motion. For this reason, the points on the free 
surface are redistributed at each time step using a cubic spline fitting of the instantaneous shape. The Laplace 
equation is solved to update velocities and the process is marched forward in time. Formally, the resolution of 
the scheme is second-order in space and 41 -order in time, but surface curvature and capillary forces are resolved 
with 4lh-order accuracy given a set of points defining the instantaneous shape." 

As the surface forms a conical film when it exits the nozzle, instabilities result in the formation of annular 
ring-shaped ligaments. A pinching criteria is used wherein the ligament is physically separated from the parent 
surface if nodes on either side of the film lie within 2/3 grid space of each other. Prior studies'"''14 using this 
criterion indicate an insensitivity to the resultant ligament size using this approach. The droplet diameter after 
pinch-off is calculated from the linear theory due to Ponstein. The growth rate, co, was related to the wave 
number of the disturbance, k, as follows: 

par '   \2na; (*0 
/.(Aa,) 

I„(kar) 
(11) 

where a, and V, are the radius and the circulation of the vortex-ring, respectively, and l0 and /; are modified 

Bessel functions of 0th and Is' order. When T, = 0 , this result reduces to the classic Rayleigh result for 
instability of a liquid column. We have assumed that ar is much smaller than the nozzle radius, a which requires 
ka, < 1.0 for application of this analysis. The equivalent circular diameter of the ring-shaped ligaments is used 

to determine the appropriate ar value for each ring. Using Ponstein's result, the k value that maximizes co is 
determined for each ring pinched from the parent surface. Droplets are assumed to be formed instantaneously 
from this initial condition and the initial velocity and position of each droplet is determined assuming they arc 
uniformly distributed about the circumference of the ring. The output from this computation is then used as the 
input of the droplet tracking program. Newton's 2" law is applied to describe the motion of a droplet assuming 
aerodynamic drag to be the only external force acting on a droplet. 

duD 1      ,_ 
mD—— = CD-pg(ug 

at 2 
•uD)\ug -uD\AD (12) 

where AD is the projected area of a droplet (7tD2/4), mD and uD are droplet mass and velocity, respectively. 

Recent  calculations"   have  shown   good  comparison  with   measured   film   thicknesses  and   some   limited 
comparison with Sauter Mean Diameters from sprays formed from these atomizers. 

Channel 

Figure 1. A   classical   swirl   injector   noting   nomenclature   used   for   design 

5.     Baseline Case Simulations 
Figure 1 provides a to-scale representation of the baseline injector geometry that was analyzed. This 

monopropellant swirl injector design was derived using the procedure outlined in Ref. 1 to deliver 9.07E-2 kg/s 
of water at a pressure drop of 0.69 MPa. It has a nominal total spray angle of 90° and the film thickness 
computed to be approximately 0.43 mm at the nozzle exit. The injector geometry for this design is summarized 
in Table 1 below: 
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Table 1. Assumed     Baseline     Geometry     for     Swirl 
Atomizer Simulations 

Radius to Center of Tangential Chn, a0 

Radius of Nozzle, a 
Radius of Vortex Chamber, Rv 

Radius of Tangential Channel 
Length of Tangential Channel 
Length of Nozzle, L„ 
Length of Vortex Chamber, Lv 

No. of Inlet Channels 
Inlet Velocity  

= 3.226 mm 
= 2.151 mm 
= 4.234 mm 
= 0.643 mm 
= 1.516 mm 
= 1.500 mm 
= 4.547 mm 
= 4 
= 17.50 m/s 

Since the BEM computation assumes an 
axisymmetric domain, the inflow from the 
four tangential channels had to be 
approximated with a cylindrical passage 
having the same total inflow area. Using this 
approach, the inflow velocity is replicated. 
The length of the channel was set to replicate 
the overall flow time the fluid spends in the 
tangential channels. The liquid density of 
1000 kg/m , injection velocity of 17.50 m/s, 
and nozzle radius of 2.151 mm served as the 
basis for nondimensionalizing all other 
parameters. 

Figure 2 shows a typical computational 
grid employed in the studies. The mass flow is specified on the inlet boundary or the pulsating chamber pressure 
condition is specifed; nodes on solid walls are subject to the flow tangency condition ( q = 0), and nodes of the 

free surface are subject to the Bernoulli condition derived in Eq. (8). The node lying at the free surface junction 
with the head-end of the vortex chamber is treated as a moving node such that the free surface remains 
perpendicular to the wall at this location. The grid spacing along the head-end of the vortex chamber is 
stretched/compressed to accommodate movement of the corner node. Using this treatment, the gas core radius 
evolves naturally as a simulation result from an arbitrary initial condition. 

In Ref. 5, we compared nonlinear steady-state computations with the linear theory for a variety of parametric 
injector designs including the baseline geometry summarized in Table 1. Results were generated for various 
grids thereby demonstrating convergence and accuracy of the model. These grid tests showed no discernable 
difference in core radius, film thickness, velocities, and jet half angle, for the meshes studied from 
ds = 0.020 to 0.040 . Computed film thicknesses also show excellent agreement with experimental results and 
limited comparisons of computed drop sizes with measured data show good agreement. A typical number of 
nodes that evolve for subsequent calculations is 250 nodes with the grid space of ds = 0.032 but the number of 
points increases with time up to 900 nodes due to increased jet length. In addition, the simulation time for a 
dynamic response computation takes typically about 2 weeks on the 1.0 GHz Athlon CPU used in the modeling. 

The steady-state results show 
surprisingly little nonlinear effects and the 
core radius, nozzle exit film thickness, and 
jet half angle were nearly identical for both 
the nonlinear calculation and the linear 
theory for a wide range of designs. The one 
exception to this result is for nozzles that 
are short; in this case the linear theory 
tends to over predict the spray half angle 
and under predict the film thickness 
relative to the model calculations. Table 2 
shows the extent of agreement between the 
two BEM calculations (using perturbing 
inflow velocity and the other using 
pulsating chamber pressure incorporating 
Ref. 18 for solution at interior nodes) and 
the linear theory for the baseline conditions 
summarized previously. The minor 
differences between them are attributed to 
the limitations of the methods employed in 
calculating these parameters and to the 
accurate calculation of fluid properties at 
interior nodes rather than the difference in 
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Figure 2. 
a swirl injector. 

A 2-D axisymmetric grid system used to model 

the specified boundary condition. This is further confirmed, as will be discussed in a later section, by the fact 
that the change in core radius in the vortex chamber due to fluctuating chamber pressure is negligible compared 
to the thickness of the liquid film. 
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Table 2. Calculated result co mparison against the theoretical result of V.G. Bazarov10 

Theoretical result BEM (perturbing 
inflow) 

BEM (perturbing chamber 
pression 

Core radius (r„) 0.707 0.705 0.706 
Film thickness (/i) 0.200 0.205 0.204 
Half spray angle 45° 45.5° 45.5 
Total 
Velocity 
(m/s) 

Nozzle entrance - 20.7 (at wall) 
11.7 (at free surface) 

20.5 (at wall) 
11.6 (at free surface) 

Nozzle exit - 24.3 (at wall) 
21.0 (at free surface) 

24.3 (at wall) 
21.03 (at free surface) 

Outside injector 36.09 36.12(z = 5.04, 
r = 2.78) 

36.10(z = 5.04, 
r = 2.78) 

Axial 
Velocity 
(m/s) 

Inlet channel 17.50 17.50 17.56 
At nozzle center 17.37 17.45 17.51 
Outside injector 26.26 26.26 26.3 

III.   Results and Discussion 

D. Static Characteristics Analysis 
The geometry provided in Table 1 served as a baseline condition for the computations. In a steady chamber 

pressure condition, the radial/axial velocity profiles on both upper and lower fluid surfaces are compared against 
theoretical values in Fig. 3. Results tend to asymptotically approach the quasi-1-D theoretical values as one 
moves far away from corners. Figure 4 also shows the free surface shape inside the injector as well as the final 
jet shape (at t' = 12 ) with shed droplets. The liquid core evolves naturally as a part of the calculation as docs the 
cone angle formed by the conical sheet exiting the orifice. Under steady flow conditions, the shed droplets arc 
moving in the same direction as the parent jet and their size distribution is almost constant. The computed flow 
properties for the steady injection case result in an SMD/a of 0.185, and a cone half angle of 46° with other 
statistical properties summarized in Table 3. 

Figure 5 provides a 3-D visualization of the spray evolution and the jet core structure. The breakup length is 
nearly constant after /* =5.0 and shed droplets are tracked downstream with the direction angle of the parent 
jet. The overall spray is qualitatively similar with that of actual experimental images.16 The initial ligament 
pinching events lead to droplets that are dispersed somewhat from the final cone angle formed by the spray. This 
is an artifact of the initial conditions selected for the simulation and not necessarily representative of the chaotic 
startup observed during the chamber filling process of a real device. 

Table 3. Statistical properties for a swirl injector 

 Properties 
SMD/a 
ND 

Do/a 

uD/U 

vD/U 

0.185 
1741 
0.198 
1.21 
1.26 
45.8 

35 



1 6 - 

1.4- 
Chamber Nozzle 

1.2- 

—  10- / 
/ 

XI 
<o 

06- j 

/ 
0 4 • / Lower surface 
02- 

-— Upper surface 
0.0-  1 [ 1—'—r i        '        i        < 

1 6 - 
Upper surface 

\ 
1.4- 

Chamber Nozzle 

1.0- .  
0.8 - 

06 • 

04 - 

From 1D Theory 

02- 
Low ir surface 

0.0-  • 1 1— —i •— i        •        i        • 

Radial (left) and axial (right) velocity profile along fluid surface in a classical swirl 

o 1 

Figure 4. 

23456789 10 

Final jet shape showing shed droplets for baseline swirl injector, at t" = 12.0 . 

Y 

1              1         >^fl B 
— X k- 

Figure 5. Dimensional view of the final jet shape computed for baseline conditions noted in 
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Pt 1 t/inp:       z = 0.258, r= 2.665 
Pt2 UAmb:   r=1.495, r= 1.968 
Pt 3 ^noz.entr   Z — l.\ 1 J, r= 1.000 
Pt4 Unoz,exit:   Z — L. /Jo, r= 1.000 
Pt 5 t/out:       r = 5.036, r= 2.789 

E.  Behavior under Dynamic Injection 
The dynamic response was studied for the injector geometry shown in Fig. 1 and Table 1 at the baseline 

injection velocity and pressure drop of 17.5 m/s and 0.69 MPa respectively. To compare results against the 
theoretical analysis of Bazarov & Yang," the velocity was interrogated at a variety of locations in the film. 
Figure 6 shows locations for dynamic response analysis in our calculation. The detailed locations are as follows: 

( at the channel inlet) 
( at the chamber wall ) 
( at the wall of nozzle entrance ) 
( at the wall of nozzle exit) 
( outside the nozzle ) 

Two distinct approaches have been used 
for simulation of unsteady flow conditions. 
Initially, we utilized a forced excitation via 
oscillation of the inlet massflow. Since the 
dynamics of the film thickness in the vortex 
chamber could lead to large amplitude 
surface waves, this process can in principle 
give results substantially different from the 
case where the gas pressure in the vortex 
chamber was oscillating in time. For this 
reason, a second approach was also 
investigated wherein the oscillation was 
imposed via an unsteady pressure in the 
vortex chamber. This latter approach is 
more realistic for dynamics induced by 
combustion chamber pressure variations, 
while the former approach is more 
representative for feed system based 
oscillations. 

6.     Dynamic Massflow Simulations 
The     dimensionless     time      in     the 

computational domain is t' = L'/a!, so the 

dimensionless    oscillation    wave    number 

z/a 

Figure 6. Selected  locations  for  dynamic  response 
analysis in a classical swirl injector. 

( m') for actual oscillation frequency (/) is as follows 

.a a „   ,    2.151£- 
w =—w = —in f=  

U        U 17.5 
:27rxf = 1.7229E-4xf (12) 

Then, for a given input oscillation frequency, the injection velocity is pulsation can be written: 

F(BT')= ,4sin(crY) (13) 

where A is the amplitude of the massflow pulsation. In our study, the disturbance is prescribed as a fluctuation 
of the inflow velocity in the tangential channel, Eq. (13), or as perturbation of chamber pressure as seen in Eq. 
(14). 

AP = A/stCady + £ sin(fttf) (14) 

In addition, the inlet for the tangential channel is assumed as the circular cylinder in our axysimmetric 
simulation and its area is determined to have the same mass flow rate with the actual injector. In order to keep 
the constant area for the same mass flow rate throughout the tangential channel, the channel width at the tip and 
the root can be calculated: 

"T.iip — 
R, 

RV+LT 

WT,roo,, where WTjo 
ARf 

2K 
(15) 
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7.    Dynamic Chamber Pressure Simulations 
Here, the unsteady pressure drop across the film in the vortex chamber must be ascertained in order to 

determine the instantaneous pressure drop across the tangential channels. From the radial momentum equation. 

-jr = -^j^, where for the potential vortex: Ve = y^r. After integration, the dimensional pressure drop across the 

liquid film can be computed: 

Afl'=- P
v- 

%n2 

\ 

V Kin 

So that the nondimensional pressure drop can be written: 

W 
%n2 

Rl       R2r 

Substituting nondimensional circulation T = 2nRinV0 = 27iRinVin we obtain 

V-2 ( R2 

2    {RZ,    RC 2 [R2 (16) 

Assuming a constant stagnation pressure in the manifold and neglecting viscosity losses,  Bernoulli's 

equation gives the pressure drop across the inlet channel: AP2 = -f- • 

So the total pressure drop across the injector is the sum of pressure drops across the liquid film and inlet 
channel: 

AP = APt= AP2 
V-2 R2 
* in   s\n 

~T~RJ 
(17) 

Knowing this pressure drop the inflow velocity can be computed as: 

Rc 

Rb, 
(18) 

Where  the   overall   pressure  drop   in   the   system   is  assumed  to   be  a   sinusoidal   function   of time 

AP = A/|leady +£sin(<wf). The steady state pressure drop is calculated from the initial conditions: 

A/'s Steady — 

2R2 
(- Study 

(19) 

Figure 3 shows a typical computational grid employed in the studies. The initial pressure drop is computed 
from Eq. (12) based on the steady state solution for the core radius using constant inflow rate. This pressure 
drop plus perturbation is further converted to massflow on the inlet boundary using Eq. (13). 

F. Simulations Assuming Forced Mass Flow Pulsations 
A series of simulations were conducted using the unsteady massflow methodology outlined in Eqs. 12-15. 

An initial simulation was performed with a 10% massflow fluctuation ( A = 0.1 ) at a frequency of 5000 Hz. At 
lower frequencies, the dynamic simulation can require long integration times in order to build up statistical 
properties for drop sizing. In order to save computational cost, this simulation was restarted from the steady 
state solution obtained at the time of t' = 5.0 and integrated in time until quasi-periodic behavior was obtained. 
The input and nozzle exit velocity histories are overlaid for the period 10</" < 20 in Fig. 7. The phase lag and 
amplitude modulation of the input signal is evident from this comparison. 

The dynamic response for a single cycle of the imposed oscillation is depicted at various points in the 
injector in Fig. 8. The unsteady part of the signal is plotted at each location in order to assess wave amplitude 
and phase shifts at various points in the flow path. In Fig. 8, the oscillation frequency and the amplitude, for the 
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plot on the left, were set as / = 5000 Hz and ^4 = 0.1 , respectively. The vortex chamber acts as an accumulator 

and changes in massflow cause very little variations in velocity at Pt. 2; the massflow variations lead to changes 
in the size of the vortex core in this region. At Pt. 3 (nozzle inlet), a very large lag is notable and the amplitude 
of the oscillation increases as the fluid accelerates into the contraction region. At the nozzle exit, the oscillation 
amplitude is diminished somewhat as the swirl velocity is increased. The signal actually appears to be leading 
the input at this location for the conditions studied—this unusual characteristic is unique to swirl injectors with 
large vortex chambers that can cause large lags in response. The amplitude of the signal is attenuated further at 
the nozzle exit and into the conical film with smaller phase lags noted in these regions due to the relatively 
shorter flow times characteristic of the nozzle and regions downstream. 

The right plot of Fig. 8 shows the dynamic response for / = 1000 Hz and A = 0.1 .At this lower frequency, 

the response lags the input much more modestly, and the overall trends in amplitude are preserved from the 
5000 Hz case. As the flow times are more comparable to the oscillation period in this case, the overall lag of the 
injector is much more modest. 

18 20 

Figure 7. Raw input (left) and response (right) for initially disturbed inflow velocity; the 
oscillation frequency and the amplitude were set as / = 5000 Hz and A = 0A , respectively. 
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Figure 8. Dynamic response through a classical swirl injector, which was investigated in 
velocity response; the oscillation frequency and the amplitude where set as / = 5000 Hz , A = 0.1 

(left), and / = 1000 Hz , A = 0.\ (right), respectively. 

G. Parametric Studies Assuming Chamber Pressure Pulsations 
The dynamic responses of a single channel swirl injector, whose parameters are given in Table I (baseline 

injector), was analyzed using the linear model developed by Bazarov and compared with the computational 
results at various frequencies. These responses are computed at the exit plane of nozzle of the swirl injector. A 
nondimensional time step of dt = 0.0005 along with a grid spacing of ds = 0.032 was used for each of these 
cases. An 8.4% perturbation of pressure, corresponding to a massflow pulsation of 3.5% across the injector was 
used in all our computations unless specified otherwise. 
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For the baseline injector operating at 0.69 MPa the amplitude response is shown in Fig. 9 and the 
corresponding phase shift associated with it shown in Fig. 10. The amplitude response predicted by the 
computational model is in close agreement with the linear results for frequencies less than 5 kHz. For 
frequencies larger than 5 kHz the BEM model predicts a sharp drop in the amplitude of the computed oscillation 
from that which is predicted by the linear theory, indicating that the injector is approximately stable at high 
forcing frequencies. The computed phase shift (Fig. 10) shows a similar behavior, noting a reasonable 
agreement with linear theory until the 5 kHz region, at which point we see a strong departure. A number of 
studies have been conducted to establish the cause of this departure from the linear theory as outlined below. 
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computational results. 

The baseline injector operating at 1.38 MPa was considered in order to quantify the effect of steady state 
operating pressure on the BEM computed dynamics response deviation from the linear theory. The Weber 
number We = 17,978 and Reynolds number Re = 53,171 are changed accordingly. As pressure is doubled the 

injection velocity changes by a factor of v2 , therefore V,„ = 24.75 m/s . 
/.   Effect of mean injection velocity 

The amplitude response (Fig. 11) of the 1.38 MPa baseline injector shows similar behavior as that of the 
original 0.69 MPa injector. The computational results start to deviate from the linear theory around 7 kHz; 

which is what one would expect in scaling velocities using the Bernoulli equation (5 kHz*v2; 7 kHz). By 

plotting the amplitude of the response verses Strouhal number ( ShT =-yL) in Fig. 13, the two results lie on top 

of one another, indicating that the departure from linear theory is strongly dependent on the liquid injection 
velocity. The computed phase shift associated with these shows (Fig. 12) a similar trend as that of the 0.69 MPa 
injector except that the change in slope occurs at a frequency of 7 kHz. 
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£    Nonlinearity of baseline injector 
To determine whether the deviation in the amplitude response is dependent on nonlinear effects, the baseline 

injector at 0.68 MPa was perturbed at 3 different frequencies to as much as 90% of the mean pressure drop. 
Figure 14 shows the scaling of the massflow perturbation as a function of the amplitude of the pressure 
perturbation indicating a very linear dependence over the wide range of imposed unsteady pressure signals. 
Even at 7 kHz which lies on the non-agreeing side of the frequency range the swirl injector exhibits linear 
behavior. For this reason, nonlinear effects do not appear to be the cause of the difference between the linear 
theory and the BEM computations. 
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The lack of nonlinear effects can be partly explained by the lack of any significant change in the wave height 
in the vortex chamber when compared to the liquid film thickness (Fig. 15). A perturbation of up to 90% of the 
mean pressure drop results in the liquid thickness changing by less than 3%. For this reason, there is little 
difference between an imposed massflow pulsation vs. an imposed chamber pressure perturbation as the vortex 
chamber responds very similarly in either case. 

9.     Effect of the inlet channel location and width 
One of the main differences of the BEM model as compared to an actual swirl injector is the way the inlet 

channels are modeled. The tangential inlets of the actual swirl injector are modeled as 2-D axisymmetric radial 
inlet such that the mass flows are matched. A series of simulations were conducted to determine the effect this 
difference in modeling would have on the overall response of the swirl injector. The location of the inlet channel 
was moved very close to the head end of the vortex chamber (fromlO.6% to 1.5% of the vortex chamber length), 
keeping all other parameters fixed at baseline injector values. The amplitude and phase response are shown in 
Fig. 16 & Fig. 17 respectively. The minor discrepancies in the magnitude of the amplitude response can be 
attributed to the different inlet location resulting in a different pattern of reflecting surface waves in the vortex 
chamber. However, the amplitude and phase rolloff (relative to the linear theory) at 5 kHz is still readily 
apparent. 
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The width of the inlet channel (WT) was increased by an order of magnitude keeping massflow constant in 
order to assess the effect of this variable. Figures 18 and 19 depict the amplitude and phase response for this 
case as compared the baseline injector. Increasing the width reduces the inlet velocity by a corresponding factor, 
therefore any dependence on the artificially imposed radial velocity would be revealed. The amplitude response 
(Fig. 18) for the 10 times wider inlet channel shows a similar trend as before with the deviation from linear 
theory near 5 kHz. The lower magnitude of response is due to the lower pressure drop across the inlet channels 
(the injector response is defined as the ratio of nondimensional mass flow perturbation to pressure perturbation). 
The phase shift associated shows trends as seen before (Fig. 19). For this reason, the axisymmetric modeling of 
the discrete number of inlet channels does not explain the discrepancies between the BEM results and the 
theoretical results. 
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10.   Effect of the varying vortex chamber length 
The length of the vortex chamber of the baseline injector was varied from 25-200% to check for 

multidimensional effects. As Fig. 20 shows, when the length of vortex chamber becomes larger than the liquid 
thickness ( Z,,. //; « 1) the amplitude response is no longer dependant on the length of the vortex chamber. Since 
all previously discussed computations where performed for LJh greater than unity, they are free from any 
significant multidimensional effect. 
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/ /.   Summary of parametric studies 
These studies indicate that there are substantial differences between the 2-D computations and the l-D linear 

theory over a range of frequencies and that the differences are not attributable to inlet channel modeling or 
location, nonlinear effects, or multidimensional effects. The one parameter that does indicate a strong scaling is 
the inlet flowrate or tangential channel injection velocity, and our belief is that the momentum required to turn 
the tangential entry flow into the axial direction plays a strong role in the differences that are observed. The 
linear theory does not account for this momentum exchange, and since it would presumably occur over a finite 
time, there is an opportunity for it to cause an additional lag in the system thereby explaining the observed 
amplitude/frequency dependence of the multidimensional simulation results. The flow turning phenomenon 
would presumably scale with injection velocity, i.e., higher injection velocities lead to faster turning and this 
trend is replicated in the parametric studies. The length scale associated with the turning is much more difficult 
to assess. We have looked at a number of length scales including the width of the channels, length of the vortex 
chamber and nozzle and the height of the film, but the overall scaling does not appear to be accurately replicated 
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considering any of these lengths. Obviously, this important finding needs further research to confirm the 
hypothesis we put forward. 

H. Effect on Drop Size Distributions 
A series of simulations were conducted using an imposed massflow pulsation in order to assess the influence 

on droplet statistics under unsteady injection conditions. Table 4 shows statistical property variation for various 
oscillation amplitudes at a frequency of / = 5000 Hz . Figure 21 shows trends in drop size and number of drops 

as the pulsation amplitude is increased showing that increased amplitude pulsations lead to formation of smaller 
droplets. The theory that droplet vaporization/combustion rates can increase under unsteady conditions has long 
been considered in the combustion instability community and for classical swirl injectors, the recent calculations 
show merit to this hypothesis. Jet breakup length decreases with oscillation amplitude, which means that the 
breakup occurs faster before the jet is sufficiently developed. Interestingly, the cone angle also increases in this 
case since axial velocity decreases largely with increasing amplitude. 

The resultant spray development under unsteady inflow conditions is depicted in Fig. 22, for / = 5000 Hz , 

A = 0.\ , and t' = 20.0 . The alternate grouping of droplets (Klystron effect) attributed to alternating regions of 
faster/slower fluid is readily apparent. Because we have considered a case where axial and radial velocities are 
nearly equal (cone angle of 90 degrees), the pulsations do not lead to substantial "bushiness" in the cone, but 
other cone angles may produce larger fluctuations in this quantity under unsteady conditions. 

Table 4. Statistical   properties   according   to   the   oscillation   amplitude, 
/ = 5000 Hz 

Amplitude     A = 0.0 A =0.5 A = 0.\ A =0.3 

SMD/a 0.185 0.179 0.174 0.165 
ND 1741 1910 2104 2948 

Do/a 0.198 0.197 0.198 0.186 
UD/U 1.21 1.20 1.17 0.93 
vD/U 1.26 1.22 1.24 1.26 

eD° 45.80 45.47 46.71 53.64 
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Figure 21. Droplet size (left) and total number of droplets (right) variation with the oscillation 
amplitude in dynamic response analysis of a classical swirl injector, / = 5000 Hz . 

IV.   Conclusions 

A fully nonlinear model based on the boundary element method has been developed to assess the dynamic 
response of classical swirl injectors. Forced excitation (pulsations of inlet flow) and sympathetic excitation from 
oscillating downstream/combustion chamber pressure simulations have been conducted to ascertain the 
nonlinear, multidimensional response function of the injector over a relevant frequency range. In addition, the 
model has been used in concert with a linear stability analysis for ring breakup to assess droplet fields and drop 
sizes produced under unsteady injection conditions. 

While at low excitation frequencies, the multidimensional nonlinear BEM computations agrees well with the 
1-D linear theory, at moderate frequencies, there is a substantial departure in the two treatments with the 
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nonlinear results giving lower amplitude and larger phase-shifted response. A number of inquiries were made to 
assess this behavior and the channel width/location, vortex chamber length, and pulsation magnitude (nonlinear 
effects) were all ruled out as potential contributors. The rolloff behavior is strongly correlated with the injection 
velocity and it is believed that the time and momentum exchange to create flow turning from tangential to axial 
direction in the vortex chamber plays a role in explaining discrepancies between the two models. 

The dynamic response seems to contain very little nonlinear character and the massflow pulsations scale 
linearly with imposed pressure perturbation magnitude. For this reason, we see little differences between an 
imposed massflow pulsation and a sympathetic excitation via an unsteady downstream pressure. The vortex 
chamber serves as an accumulator in either case and the dynamic flowrate resulting from either excitation 
produces very similar results. The pulsations in inlet flow are mainly manifested in vorticity waves within the 
vortex chamber and the overall pulsations in the free surface are quite modest—at least for the geometries and 
flow conditions studied. 

A series of simulations were conducted to assess spray statistics under unsteady inflow conditions. These 
simulations indicated a strong nonlinear dependence of droplet sizes/SMD values that tended to decrease as the 
amplitude of the oscillation was increased. Visualizations of the resultant droplet field indicated a prominent 
Klystron effect with clustering of droplets into discrete regions with a wavelength directly attributable to the 
pulsation frequency. The unsteady injection conditions led to a reduction in the film breakup length as well. 

Appendix A.     Theoretical result for dynamics of a swirl injector 

V. G. Bazarov's model" provides the theoretical analysis method for dynamic response of the classical 
injector as shown in Fig. 1. In this model, the tangential channel, the vortex chamber and the nozzle are 
analyzed independently and then combined to give the overall transfer function of the swirl injector. Then the 
dynamic response of the classical swirl injector obtained by the 1-Dimensional theoretical model is shown in 
Fig. A.I and A.2. Here the analyzed injector has 0.69 MPa pressure drop with pure water and jet speed through 
inlet is U = 17.5 m/s as mentioned early. These results show the interesting characteristic of swirl injectors to 
provide either amplification or damping of the input disturbance. There is minimal phase shift at very low 
frequencies, which indicates that the whole swirling liquid responds as a rigid body. As frequency increases, 
there is an increasing phase shift along with decreasing magnitude of the response. The analysis result provides 
a good comparison with our calculated result by using BEM code. The theoretically predicted response is shown 
in Fig. A.I, which is obtained for pressure pulsation in the feed system. 

Mi 
a/a 
AP'/AP 

(A.l) 

where riv is defined as the response function of the swirl injector, AP' is the pressure pulsation across the 

injector, and Q'„ which is the mass flow fluctuation at the nozzle exit. As riv is complex, both the phase and 

magnitude of the response can be deduced from it. Figure A.2 shows the theoretically predicted dynamic 
characteristic through each injector component. Thus the combined result of Fig. A.2 gives total characteristics 
shown in Fig. A.l. 

WOO 10000 

Figure A.l. Theoretically predicted response of a classical swirl injector. 
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Appendix B - Paper on Nonlinear Response of Multichannel Swirl 
Injectors 

Hydrodynamic Modeling of Swirl Injectors with Multiple Rows of 
Tangential Channels 

Sergey I. Zakharov5, Renith Richardson6 and Stephen D. Heister7 

Purdue University, West Lafayette, IN, 47906 

Analytic and nonlinear computations have been conducted to study the dynamics of 
swirl injectors utilizing multiple rows of tangential inlet channels. The study is 
motivated by the fact that the use of multiple rows of inlets provides a mechanism for 
wave cancellations within the vortex chamber of the injector, thereby reducing injector 
response when compared with a single row device. The existing linear inviscid theory 
has been amended to account for the additional wave interactions arising from two rows 
of channels within the chamber. In addition, a boundary element method technique has 
been utilized to study nonlinear aspects of the problem. Results are presented for 
numerous frequencies in order to characterize the overall response of this injector type. 

Nomenclature 

Bo = Bond number 
Djj = doublet matrix element 
C = Green's function 
P = pressure 
q = normal velocity 
Rr = vortex chamber radius 
/?,,„ a0 inlet radius of tangential channel 
Rc = gas core radius 
R,„ a = nozzle radius 
LT length of tangential channel 
Lx = length between two inlets 
L„ = length of nozzle 
Vin = Inlet velocity 
r = radial direction 
s = distance along the surface 

Stj = source matrix element 
u = axial velocity 
v = radial velocity 
We = Weber number 
Z = axial direction 
a singular contribution in integral Laplace eq. (Eq. 1) 
P = surface slope 

T = circulation 
K = surface curvature 
(j> = velocity potential, phase shift 

O" = liquid surface tension 
p = density 

I! = response function 
CO = angular velocity 

E, = equation of a surface wave 
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'' Graduate Research Assistant, School of Aeronautics & Astronautics, 315 N. Grant St., Student Member 
7 Professor, School of Aeronautics & Astronautics, 315 N. Grant St., Associate Fellow. 
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initial amplitude of wave 
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Subscript 

11 = nozzle 
v,vc = vortex chamber 

1 = tangential channel 

k = head end 
a = inlet 'a' 
b = inlet 'b' 
sw = surface waves 
vw = vorticity waves 

Superscript 

i = dimensional quantity 
A = perturbation quantity 
- = mean quantity 

I.   Introduction 
THE injector plays a critical role in defining the performance and stability limits of a liquid rocket engine and 
remains as the one component that lacks predictive tools and design models that aren't based largely/entirely on 
the behavior of prior designs. The vast majority of prior instability problems have been solved chiefly by 
making modifications to the injector; it is the component that designers can most readily use to affect the 
stability characteristics of the engine. The state-of-the-art in injector design relies heavily on empirical data 
from past designs and linear/empirical models of atomization, secondary atomization, and mixing processes. 

The classical theory of the steady-state operation of swirl injectors has been published in numerous 
contexts " These theoretical treatments generally assume a linearized, inviscid flow and provide simple 
relationships for injector exit conditions (film height, velocity, and cone angle) as a function of fluid parameters 
and injector design. The results of these models have been compared to experiment and tend to agree well for 
low-viscosity fluids. Most recently, a nonlinear treatment has been developed to provide additional insight into 
the steady operation of these devices8. While there is still fundamental understanding lacking for viscous and 
non-Newtonian fluids, the steady operation of the swirl injector is fairly well understood at present. 

The dynamics of swirl injectors have been much less studied. In combustion systems, the injector can 
participate as an active element and this has motivated the limited analyses that have been conducted. Simple 
drilled orifice response has been characterized in the 1%0's and 1970's9"" using linear models. Because many 
of their liquid rocket engines employed this injector type, the Russians were one of the early developers of 
theories related to the dynamics of swirl injectors. Much of the published work stemming from these efforts is 
due to Dr. V. Bazarov and his collaborators12"15. In these works, the waves formed in the vortex chamber due to 
unsteady flowrate interact with the convergent section forming the nozzle and transmit pulsations of massflow 
as a result of either forced excitation or passive excitation via an unsteady downstream pressure. Recently, a 
patent appeared for the injector style used in many of the Russian booster engines"'. This patent revealed a 
design implementing two rows of tangential inlet channels feeding an open nozzle design injector in which the 
vortex chamber has the same internal diameter as the nozzle section. The design permits wave cancellations at 
selected frequencies where the wavespeed and row spacing provide a destructive interference of waves 
generated from the two rows of inlets. This design approach can be attractive to reduce injector response at 
known acoustic frequencies for a given combustor design. 

The motivation of the current study is to amend the linear theory to account for this design feature and to 
construct a nonlinear model as a basis for comparison with the linear results. Both tools arc then applied to a 
candidate injector design to evaluate its performance over a range of frequencies. The following sections 
provide descriptions of the computational model, the analytic tool, and results from exercising these tools for a 
given injector design. 
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II. Computational Model 

A. BEM Method for a Swirling flow 
Figure 1 provides a schematic of a classical simplex atomizer noting the fluid injection via tangential 

channels at the head end of the vortex chamber. The gas core develops naturally as a function of the vortex 
chamber diameter, inlet massflow and the degree of swirl imparted to the fluid. The contraction to the nozzle 
facilitates acceleration and thinning of the film to provide a conical sheet that breaks up into a spray. Key 
dimensions and nomenclature are noted in Fig. 1 for application to the analysis and subsequent discussion. 

Yoon and Heister1 and Park18 provide a complete description of the basic model elements; only highlights 
will be presented here in the interest of brevity.   An inviscid, incompressible, axisymmetric flow is presumed 
such that the flow dynamics are governed by Laplace's equation, V2^ = 0.    The boundary element 

method utilizes an integral representation of this equation to provide a connection between f values on 

the boundary, the local geometry, and the local velocity normal to the boundary, q = d<f) I dn , as 

follows: 

<xHr,)+ I 
on 

ds = 0 (1) 

where (fri^) is the value of the potential at a point rj , S is the boundary of the domain, Ot is the 

singular contribution when the integral path passes over the "base point", and G is the free space 
Green's function corresponding to Laplace's equation. For an axisymmetric domain, the free space 
Green's function can be expressed in terms of elliptic integrals of the first and second kinds and is a 
function solely of the instantaneous surface geometry. For this reason, a discrete representation of 
Eq.(l) can be cast as a linear system of equations relating local § and q values. In the discretization, 
both <|> and q are assumed to vary linearly along each element, thereby providing formal second-order 
accuracy for the method. Since the resulting integrals do not have exact solutions in this case, 
Gaussian quadrature is used to maintain high accuracy of integration and preserve second-order 
accuracy overall. 

While this governing equation is a linear, nonlinearities in these free surface problems enter 
through the boundary condition at the interface. The unsteady Bernoulli equation provides a 
connection between the local velocity potential and the surface shape at any instant in time. Prior 
formulations ' have provided a derivation of this result suitable for implementation in a Lagrangian 
surface tracking environment. For the swirling flow, modifications are required to account for the 
centrifugal pressure gradient created by the swirl. The dimensionless unsteady Bernoulli equation is 
as follows, 

Dd>     1._ .2    _   _      _      K     Bo 
 = — M,     -U-U   — F H Z 
Dt     V ''       '    l'     •    We    We (2) 
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where <)> is the velocity potential and AT is the local surface curvature and the Weber number 
(We=p ifa/o) and.Bond number (Bo=pga'/a) become the dimensionless parameters governing the 
problem. Physically, this result is a Lagrangian form suitable for use for fluid elements moving with 
the local velocity of the free surface. The terms on the RHS of the equation include the effect of 
dynamic pressure, local gas-phase pressure, capillary, and hydrostatic pressure contributions 
respectively. In Eq.(2), the total surface velocity, u,, can be computed via a superposition of the base 

axial flow in the injector (<j>, ii) with a potential vortex (<z>v, iiv). Letting u,v,w represent axial, radial, 

and circumferential velocity components respectively, we may write: 

Figure 1. A classical swirl injector noting nomenclature used for design variables 

<f>t = <f> + <j)v   ut=u + uv  vr=v + vv   wt=w+wv (3) 

Superposition of a potential vortex can be achieved by starting with the complex potential: 

F(z) = _iLlog(z) 
In 

(4) 

where z is complex variable, V is vortex strength, and F is the complex potential. The resulting 
velocity components for this flow are as follows, 

uv = 0,    v, =0,    wv. =-— (5) 
inr 

This vortex is irrotational as known since S> = Vx« = 0, except at f = 0. Using Eq.(5), the total 
velocity in Eq.(3) can be computed; 

-[V +V2 +U> 21-H'   -H' 

(6) 
— \u,I* -u, •«„ =—[(« + «, )2 +(v + v„)2 +(w + w)2] 

1 
-[(;/ +«„)•«„ +(v + v„)-vv +(w+wv)-wv]  =-[u2 + v2] — u;,2 

where 

1 ,     1 
— wv  = — 
2 21 2nr 2nr 

\- aQU y 
(7) 

Choosing the ideal injection velocity (U), the orifice radius (a), and liquid density (p) as 
dimensions, the dimensionless result can be written as, 

^   1 
- (8) 

Dd>     1IH2 K     Bo 
= -\u\  -P + — Z-- 

Dt s    We    We \a J 
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-sin/?+q cos/? (9) 

where the Weber and Bond numbers are defined as above. In addition, the [u2 + v2] of base flow is 

simplified as |«|2. Since we have nondimensionalized against the tangential velocity, U, the Rossby 

number does not appear explicitly in Eq.(8), but the last term on the RHS of the equation corresponds 
to the circumferential pressure developed by the potential vortex. In this context, the radial location 
of the center of the tangential channel, a0, defines the dimensionless strength of the vortical flow. The 
kinematic equation for motion of points on the free surface can be expressed: 

— = —cos B -asm B —- — 
Dt     ds Dt     ds 

where p is the local slope of the wave with respect to the horizontal direction. Equations (8) and 
(9) are integrated in time using a 4th-order Runge-Kutta scheme to provide the evolution of the 
velocity potential and the motion of the free surface. 

For long integrations or resolution of highly distorted surfaces, points on the free surface will tend 
to bunch in regions of higher curvature as a result of the free-surface motion. For this reason, the 
points on the free surface are redistributed at each time step using a cubic spline fitting of the 
instantaneous shape. The Laplace equation is solved to update velocities and the process is marched 
forward in time. Formally, the resolution of the scheme is second-order in space and 4th-order in time, 
but surface curvature and capillary forces are resolved with 4* -order accuracy given a set of points 
defining the instantaneous shape. More details regarding the numerical procedure can be found in 
Yoon and Heister.17 

B. Oscillating Pressure Boundary Conditions and Domain Discretization 
The computational model was upgraded to address the more realistic condition involving an oscillating 

chamber pressure. This boundary condition will allow orifice massflows to adjust naturally to the instantaneous 
pressure within the vortex chamber.  In order to implement these physics into BEM code we need to know how 
inflow responses to changes in chamber pressure. This can be done using a potential vortex approximation 

a t r' 
From the radial momentum equation, V_Q_ _ J_££_, there for the potential vortex: V'g   =  

R'     p' dR' 2nR' 

After integration the dimensional pressure drop across the liquid film can be computed using the following 
equation: 

Figure 2. Schematic of a classical swirl injector 

AP:=- 
pT'2 

8*2 
K~   K j 

So that the nondimensional pressure drop can be written: 

AP, 
8TT V Rin        RC J 
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Substituting nondimcnsional circulation T — 7.7tRjnVg — Z7tRinVm wc obtain: 

rl f   1 t   "\ 

AP = 
R   T,i 

Rl 
l 

R c J 

v-  in_ 

2 KRC 

l (10) 

/ 
Assuming a constant stagnation pressure in the manifold and neglecting viscosity losses, Bernoulli's 

V2 

equation gives us pressure drop across the inlet channel: AP, = -Js- 
-      2 

So the total pressure drop across injector is the sum of pressure drops across the liquid film and inlet 
channel: 

V2 R2 

AP =AR +AP, =^L^- 
2  R2

C 

Knowing this pressure drop inflow velocity can be computed as: 

Vin=42AP^ 
K 

Where pressure drop is assumed to be a sinusoidal function of time AP 

steady state pressure drop is calculated from the initial conditions: 

a2     R2 
_    H mean     in 

(II) 

(12) 

AP Steady 

bPsteadv + «"sin(tf>0. where 

(13) 
1 ft 
*-IyC_steady 

Figure 3 shows a typical computational grid employed in the studies. Initial pressure drop is computed from 
Eq. (12) based on steady state solution for the core radius using constant inflow rate. This pressure drop plus 
perturbation is further converted to massflow on the inlet boundary using Eq. (13). This approach is used for 
both channels so each of them sees different pressure drop depending on the local core radius. Nodes on solid 
walls are subject to the flow tangency condition (q=0), and nodes of the free surface are subject to the Bernoulli 
condition derived in Eq.(8). The node lying at the free surface junction with the head-end of the vortex chamber 
is treated as a moving node such that the free surface remains perpendicular to the wall at this location. The grid 
spacing along the head-end of the vortex chamber is stretched to accommodate movement of the corner node. 

C.     Solution at interior nodes 
Outflow rates in the nozzle can be computed using velocities at two boundary points and assumption of 

linear velocity profile. However this approach is not accurate and results in up to a 3% error based on numerical 
experiments. In order to improve the accuracy we need to know velocity profile what requires to use an 
additional approach in order to get interior velocities. As in the solution for conditions at nodes on the boundary, 
the solution at interior nodes is made up of the following parts: the development of integral equation for the 
Green's function, the integration and the calculation of the solution for unknown values of velocity potential and 
it's derivatives. 

To compute (p on the interior points equation (1) can be rearranged to give 

1    if   dG      rbr 
An •      on 

(14) 

After discretization it becomes: 

2ncpl =Dij<pj-SlJqj (15) 
Where i denotes interior nodes andj denotes nodes on the boundary. For any individual interior node D and 

S become row vectors known from the solution on the boundary, so <p can be found from this equation. 
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In order to find velocities we need to 

d(p d<p 
compute derivatives   and   which 

dz dr 
can be evaluated by analytical 
differentiation of equation (14) with 
respect to z and r.   New integrals, resulting 
from the differentiation of the Green's 
function in the z, r directions, result from 
this process. Ref. 19 and Ref. 20 provide a 
detailed discussion of the methodology 
employed to discretize these integrals. 

After upgrading the code with this 
methodology, the axial velocity profile at 
the nozzle exit plane can be defined and 
integrated to provide the overall massflow 
produced by the device at a given instance 
in time. Evaluation of this approach, using 
simple trapezoidal quadrature to integrate 
the velocity profile, shows that computed 
time averaged inflow and outflow differ by 
less than 0.1% using approximately the 
same grid spacing for both exterior and 
interior nodes. Since we need to place 
interior nodes only along a radial line in the 
nozzle where liquid film is very thin, the 
number of additional nodes was about 10-15 in comparison to more than 300 surface nodes. Along with the fact 
that matrix inversion is not required on the interior, effect on computational time was negligible but accuracy 
increased more than on order in magnitude. 
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Figure 3. A grid system having two inlet channels 

III. Analytical Model 

A.    Single channel 
The linear model of the pressure swirl atomizer consists of 3 components namely, tangential channels, 

vortex chamber and nozzle. This analytical model was used to analyze the injector shown in Figure 1 and was 
developed by Bazarov". 

The tangential channels are be modeled as a pressure atomizer whose length is much less than the 
wavelength of oscillation. 

II 
1 

i(oLT 

1 

2 
1 + 

io)LT 

2 " 

v   V   J 

1 1    iSh, 

2 1 f S/i; (16) 

Where nr is defined as response of tangential channel and Shr — 1 /—  as Strouhal number of 

tangential channel. 
There are two phenomena being considered in the vortex chamber. Firstly the oscillations in liquid flow rate 

in tangential channels mr, produces 'Surface Waves' in the vortex chamber which propagates back and forth as 
it reflects from the entrance of the nozzle. Secondly we have what are called 'Vorticity Waves' which refers to 

the fluid regions swirling with different velocities due to VT in the vortex chamber. The vorticity waves 

strongly depends on radial velocity in the vortex chamber. The pressure drop in the vortex chamber APVC is the 

vector sum of the pressure drop due to surface waves aPv-sw and vorticity waves o/>,-w 

The nozzle is assumed to be short and any losses (no pressure or viscous losses) in it are neglected. The 
thickness of liquid through it is considered to be constant, so any effect due to 'vorticity waves' is negligible. 
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There is only phase shift in the surface waves when it travels through the nozzle of length Ln given 

coL.. 
W, —. Therefore the response of the nozzle would be 

a: n =-^ = (i-n)e-> 

Ttlvn 

(17) 

Where m„ & mvn are mass flow rate fluctuations in the nozzle and near the nozzle entrance respectively. 
n is the reflection coefficient i.e. the percentage of wave which reflects back from the contraction leading up 
to the nozzle. Combining the individual responses of the components gives the response of the swirl injector 
(Eq. 18). A more thorough description can be found in Bazarov21. 

rhn/ 

Rl       n7n,„ n. 
A- A,,,,.,i 

gP/       a i + 2n7(nt_m, + n„_,.,„) 
(18) 

Here a is a geometric parameter and AP is the pressure drop across the swirl injector. 

The total response II    / is complex; hence both amplitude and phase can be deduced from it. 

B.    Modified model for dual channel injector 

Consider a swirl injector with two rows of tangential injectors separated from each other by a distance Lx 

(Figure 4). We assume that the response of the tangential channels and nozzle are unchanged (with respect to 
single row of inlets) with the introduction of another row of inlet. Also the any modification needed due to the 
'vorticity' effect in the vortex chamber is neglected as it is found to be negligible. However the interaction of 
the surface waves in the vortex chamber has to be accounted for. See Richardson" for a detailed analysis of a 
two channel swirl injector. 

The phase shift associated with the distance between the two inlet channels Lx is given by, 

<l>x=-f- (19) 

* a—• 

a 1 bi 
/ 

\ 
,.-;-'' 

L'v 

Figure 4. A classical swirl injector with two inlets at locations 'a' & 'b' separated by a distance L, 

Where angular velocity, CO — In f and V    is the wave velocity in the vortex chamber. 

We can use the principle of superposition to examine the influence of reflected waves in the vortex chamber 
of any arbitrary length. Let us consider an initial wave in the vortex chamber at inlet 'a' given by 

^=A.e* (20) 
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Where A   is the initial height of the wave due to the perturbation in the inlet 'a'. Near the nozzle this wave 

travels a distance of Lv (length of Vortex Chamber) and becomes, 

£*, = Ke (21) 

Where <j>v the shift angle is associated with traveling Lx. distance and V(/>v is the reduction in the amplitude 

due to viscosity v . A part of this wave gets reflected which is given by, 

(£)ra|=nA/<-^ (22) 

Where II is the reflection coefficient. This reflected wave changes in the following manner when it travels 

a length Lv to reach the closed end of the Vortex Chamber 

^=nA/'(o""2'")"u2i (23) 

This wave is reflected completely from the closed end and reaches the nozzle, 

£„i:=nA/(ffl'-3*)-^ (24) 
The reflected wave will be, 

(O^-nV*-***8* (25) 
And so the waves reflect back and forth until their amplitudes become negligibly small. 
Using the principle of superposition we have the following wave near the closed end of the vortex chamber, 

QO 

rn   /(w/-2n^vl)-2nu^, 

n 0 

^=AaSnV("-H^ (26) 

Near the nozzle, 

r .     V"1 r-i/i   i{a>l-{2n+\)i)~(2n+\)ui. 

n»0 

Similarly we can derive equations for surface waves in the vortex chamber due to the perturbations in the 
inlet channel 'b'. 

Then, using the principle of superimposition we can compute the wave near the head end of vortex chamber 
as follows 

00 00 

r      _   »     V"1 T-JH   i(a)t-2nfa)-2nu&        .     V-1 j-rn   i(al-2n^+^x)-2nu^. + u^ 

n=0 n=0 

Similarly near the nozzle inlet we have 
00 00 

n=0 n=0 

The above two equations are used in computing the response of the dual channel injector in conjunction with 
Eq.(18). 
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IV. Results 

A.   Single channel 
A single channel swirl injector was analyzed using the linear model and compared with computational 

results generated by BEM code described in section II using oscillation pressure boundary conditions. A general 
but realistic injector was chosen whose design parameters are given in Table 1. A time step of 0.0003 along with 
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Figure 5. Amplitude vs Frequency 
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Figure 6. Phase angle vs Frequency 

a nodal spacing of 0.032 was used. Each computation was allowed to run for 15 sec which took approximately 4 
days of CPU time. The nodal spacing and time step are optimized for reducing run time without affecting the 
output. See Richardson" for details. 

Inlet     radius     of     tangential 
channel 

Radius of nozzle 

Radius of vortex chamber 

Radius of tangential channel 

Length of tangential channel 

Length of nozzle 

Length of vortex chamber 

No of inlet channels 

Inlet velocity 

Rln =0.1270 in 

Rti = 0.085 in 

R[ =0.1667 in 

RT= 0.0253 in 

LT = 0.0597 in 

Ln = 0.059 in 

Lr =0.179 in 

« = 4 

VT = 690 in/s 

Tablet 1. Design parameters of single channel swirl injector 

The amplitude predicted by linear theory is in close agreement with computational results for frequency 
range <5 kHz (Figure 5.) However at higher frequencies the computations predict a much more stable injector. 
Possible causes could be the time taken to turn the flow from the tangential channel to vortex chamber (90° turn) 
and associated phase shift for this. From Figure 6 we see that the change in phase between theoretical and BEM 
code results are higher after ~5 kHz. Another probable cause could be non-linear effects playing more 
significant role in the stability of the injector at higher frequencies of operation. 

B.   Dual Channel results 
A dual channel swirl injector was analyzed using the modified linear model and compared with 

computational results generated by BEM code described in section II using oscillation pressure boundary 
conditions. An injector currently being tested by Miller""1 at Purdue University was used as basis for this study 
(Table 2). 
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Inlet     radius     of     tangential 
channel 

Radius of nozzle 

Radius of vortex chamber 

Radius of tangential channel 

Length of tangential channel 

Length of nozzle 

Length of vortex chamber 

Length between two channels 

No of inlet channels 

Inlet velocity 

R   =0.454 in in 

Rn = 0.454 in 

Rv = 0.454 in 

RT =0.0175 in 

LT =0.359 in 

Ln = 0.0 in 

Lv = 0.4767 in 

Lx = 0.0999 in 

« = 8 

Fr=913 in/s 

Table 2. Design parameters of a dual channel swirl injector 
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Figure 7. Amplitude vs Frequency for dual channel swirl injector 

Since the injector to be analyzed is an 'open' injector that is the radius of vortex chamber and nozzle being 
equal further modification where required to the existing model. The effect due to reflection coefficient Y\ was 
eliminated (set to a very small value) and the nozzle length was set to an insignificant value. The flow was 
shared equally among both the inlet channels. 
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The linear model shows a local minima around 1344 Hz (Figure 7,8). This frequency corresponds to the 

distance between the two inlets Lx = 0.1 in. The amplitude of response is never greater than unity; this is a 

feature of the 'open' injector which makes it more attractive option over the 'classical' swirl injector. The dual 
channel injector is much more stable than the single inlet design due to the destructive interference of the 
surface waves in the vortex chamber. The computational results seem bounded by the single and dual channel 
analytical analysis for the same design parameters. 
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Figure 8. Phase shift vs frequency for dual channel injector 

At low frequencies (< 1000 Hz) the interference of surface waves is more prominent owing to longer 
wavelengths and fewer waves in the vortex chamber. However at higher frequencies the computational model 
shows a diminishing effect of the two channel inlet probably due to decreasing wavelengths of the surface 
waves and probably the simple dual channel analysis seems inadequate to capture all the phenomena in the 
vortex chamber. Also the non-linear effects are not being accounted for in the theoretical model. 
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The amount of mass flow rate (Fig. 9) was varied among the two sets of inlets. A 50-50 split shows to the 
most stable combination with clear local minima at 1344 Hz. Other combinations are a little less stable than the 
50-50 split and also don't show any clear local minima. 
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Figure 10. Amplitude vs perturbation 

Fig. 10 shows BEM results for amplitude amplification factor (ratio of outflow to inflow perturbation 
magnitudes) as a function of chamber pressure perturbations for the frequency of 2000 Hz. As we can see even 
80% perturbation causes nonlinearity of just above 5%. 

Conclusion 
The dynamics of swirl injectors utilizing multiple rows of inlet channels have been addressed using linear 

theory and nonlinear axisymmetric boundary element method calculations. The use of multiple inlet channels is 
believed to provide a mechanism to cancel waves and hence injector unsteadiness at specific frequencies. 
Computations have been conducted for a candidate design over the relevant frequency range to assess the 
overall phase and amplitude response of these injectors.  For designs making use of a single row on inlet 
channels, the linear theory and the nonlinear BEM results agree quite well at low frequencies, with substantial 
departure in both amplitude and phase at higher frequencies.  This departure is theorized to be due to flow 
turning within the vortex chamber that is not presently considered in the linear model. The two-channel results 
show much greater disparity as the complex wave interactions are not all considered in the modified linear 
model.  In addition, the disparity in results may also be attributed to flow turning effects that alter the phasing of 
the waves emanating from the two injection regions. Additional study is required to further illuminate this issue. 
Finally, a series of BEM computations were conduted to assess the effect of perturbation amplitude on the 
response of the device, i.e. nonlinear effects. The results show that high amplitude forcing is required to cause a 
substantial departure from the linear result. 

Acknowledgments 

The authors gratefully acknowledge the support of AFOSR Contract F49620-03-1 
manager. Dr. Mitat Birkan for their support of this work. 

•0025  under program 

61 



References 

1. Yule, A. J., and Chinn, J. J., "Swirl Atomizer Flow: Classical Inviscid Theory Revisited", ICLASS-94, 
Rouen, France, July 1994 

2. Taylor, G. I., "The Mechanics of Swirl Atomizers", 7'  Int. Congress of Applied Mechanics, Vol. 2., 
Sept 1948 

3. Giffen, E., and Muraszew, A., "Atomization of Liquid Fuels", Chapman and Hall London, 1953 
4. Lefebvre, A. H., "Atomization and Spray", Hemisphere, Washington 1989 
5. Bayvel, L., and Orzechowski, A., "Liquid Atomization", Taylor and Francis, 1993 
6. Khavkin, Y. I., "Theory and Practice of Swirl Atomizers", Taylor and Francis, 1989 
7. Doumas,  M., and  Laster,  R., "Liquid-Film  Properties for Centrifugal  Spray Nozzles", Chemical 

Engineering Progress, Vol. 49, No. 10, October, 1953. 
8. Park, H., and Heister, S. D., "Nonlinear Simulation of Free Surfaces and Atomization in Pressure Swirl 

Atomizers", to appear, Physics of Fluids, 2006. 
9. Reba, I., Brosilow, C, "Combustion Instability: Liquid Stream and Droplet Behavior. Part III: The 

Response of Liquid Jets to Large Amplitude Sonic Oscillations," WADC Technical Report 59-720, 
Wright Air Development Center, United States Air Force, 1960. 

10. Harrje, D., Reardon, F. "Liquid Propellant Rocket Combustion Instability," NASA SP-194, 1972. 
11. "Liquid Rocket Engine Injectors," NASA SP-8089, 1976. 
12. Bazarov, V., Yang, V., "Liquid-Propellant Rocket Engine Injector Dynamics," Journal of Propulsion 

and Power, Vol. 14, No. 5, September-October 1998. 
13. V. G. Bazarov and L.A. Lyul'ka, "Nonlinear Interactions in Liquid Propellant Rocket Engine Injectors", 

AIAA 98-4039, 1998. 
14. Bazarov, V. G., "Liquid-Propellant Rocket Engine Injector Dynamics", Journal of Propulsion And 

Power Vol. 14, No. 5, Sept-Oct 1998 
15. Bazarov, V. G., "Fluid Injectors Dynamics", Mashinostroenic Publication, Inc., Moscow, Russia, 1979 
16. Vasin, A., et. al., United States Patent, US 6,244,041 Bl, 12 June, 2001. 
17. Yoon, S. S., and Heister, S. D., "A Fully Nonlinear Model for Atomization of High-Speed Jets," 

Engineering Analysis with Boundary Elements, V28, pp 345-357, 2004. 

18. Park, H. B., "Flow characteristics of viscous high-speed jets in axial/swirl injectors", PhD Thesis Dcpt. 
of Aeronautics and Astronautics, Purdue University, 2005 

19. Rump,  K.   M.,  and  Heister,  S.  D.,  "Modeling the  Effect of Unsteady Chamber Conditions  on 
Atomization Processes," Journal of Propulsion and Power, V. 14, pp. 576-578, 1998. 

20. Heister, S. D., Rutz, M., and Hilbing, J., "Effect of Acoustic Perturbations on Liquid Jet Atomization," 
Journal of Propulsion and Power, V. 13, No. 1, pp. 82-88, 1997. 

21. Bazarov, V. G., "Fluid Injectors Dynamics", Mashinostroenic Publication, Inc., Moscow, Russia, 1979 
22. Richardson, R., "Linear and Non Linear Dynamics of Swirl Injectors" PhD Thesis, Department of 

Aeronautics and Astronautics, Purdue University, August 2006 
23. Miller J, K., "Experimental Study of Longitudinal Instabilities in a Single Element Rocket Combustor", 

MS Thesis, Department of Aeronautics and Astronautics, Purdue University, May 2005 

62 



Appendix C - Paper on Linear Stability of Compound Jets 

On the Linear Stability of Compound Capillary Jets 

Maksud (Max) Ismailov* and Stephen D. Heister 

School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 

Abstract 
Compound capillaryjets are utilized in the manufacturing of coated tablets in the pharmaceutical industry, or to 
produce well managed ink drops in the printing industry. Differences in densities, surface tensions, and radii 
between the inner and outer liquids cause complex instability behavior of the compound jet, and present an 
interesting atomization problem. The present study contributes to previous works on inviscid compound jets by 
establishing an alternative, simplified approach to the dispersion relation, where the surface disturbances of two 
liquids are assumed to be in phase and proportional to each other, and the flow is treated as irrotational. The 
drop sizes are evaluated, treating the compound jet at the breakup as a single jet with radius equal to the radius 
of the outer liquid, where the breakup is assumed to happen when the most unstable flow disturbance is 
developed. The density, surface tension, and radius ratios are varied parametrically to assess their influence on 
the stability and drop sizes formed. Overall, this methodology provides means for quick preliminary analysis of 
compound jets. 
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Introduction 

a, 

a, 

Ambient gas pg,pg,0g 

Outer Liquid p2,p2,</>2 

Inner Liquid px,px, fa 

Figure 1. Compound jet schematic 

A compound jet schematically shown on Figure 1 is comprised of two liquid jets, where the inner 
jet indicated by subscript 1 is surrounded by a thin annular outer jet denoted by subscript 2. Each jet has its 
own density p , pressure distribution p , viscosity (not shown), etc. This jet configuration can be achieved, 
if a high speed liquid is injected through a nozzle into another still or slowly moving liquid. Hertz and 
Hermanrud [9] (Figures 4 and 5b) observed that due to shear stresses, the inner liquid decelerates and the 
outer accelerates, and the latter forms a thin annular layer around the inner one. Generally, the compound 
jet is injected into the ambient quiescent medium having much lower density than both liquids. Two 
interfaces are developed, the first one being between the inner and the outer liquids, and the second one 

being between the outer liquid and the ambient gas, with surface tensions <JX and O"-, respectively. Due to 

natural or artificial flow disturbances, the liquids of the compound jet experience fluctuations r/l and l]-, 

around the mean injection radii a, and a,. 

This type of jets is used in printing and pharmaceutical industries. Hertz and Hermanrud [9] and 
the research group [2] experimentally showed that under certain set of property ratios of two liquids, such 
as ratios of densities, radii, or interfacial surface tensions, the compound jet can break up into fairly 
consistent structures, where the clusters of roughly monodisperse inner liquid drops are wrapped by 
fragments of the outer liquid. In printing, a train of ink drops contained in a long thread of outer liquid 
(Figure 3 of [2]) is obtained, and electrical field is applied to deflect the drops to the required points on the 
paper [10]. Similarly, in pharmacy, tablet capsules with an equal number of medicine drops inside them are 
manufactured (Figure 9 of [2]). The monodispersity of inner drops provides means for the better control of 
ink drop trajectories or for more precise mass calculation of the active ingredient in the tablet. 

Since the liquids have distinct densities, velocities, and surface tensions on both interfaces, the 
flow disturbances cause the occurrence of capillary jet instability. This problem is similar to the Kelvin- 
Helmholtz instability [8] but retains its distinct features. Kelvin-Helmholtz instability considers two plain 
parallel streams moving with two different velocities, infinitely wide in the direction perpendicular to the 
flow, and sharing one single interface between them. In contrast, the liquids of the compound jet move with 
equal velocities and have finite dimensions, circular geometry, and one additional interface exists between 
the outer liquid and the surrounding gas. 

There are many publications concerned with the temporal capillary instability of compound jets. 
Among them, the linear analyses of Sanz and Meseguer [15] and Chaunan and Maldarelli [5] treating the 
compound jet as inviscid are relevant to this study and are paid closer attention. 

Sanz and Meseguer [15] assume that the flow is axisymmetric and purely one-dimensional, where 
the velocities and pressures depend on the axial coordinate only. Their mass conservation equation is based 
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on the notion that, if a fluid element is followed as it flows in the lagrangian frame of reference, the 
Reynolds's transport theorem [7] can be applied to its cross-sectional area chosen as the property that is 

8rj        d(        l\     n conserved, which results in ——I III r   I = 0, named as Cosserat jet equations in [31. (To make the 
dt   dzy 'J i 

comparison of our study to their publication clearer, the original equations used by them will be written in 
our notation.) Since the flow is considered to be simply axial, their momentum equation is given 

duj du. 1   dp, 
by—- + u  —- = . Furthermore, they consider that the deviations of liquids from their 

dt        '  dz Pj   dz 

corresponding mean levels fx and/^ are independent from each other, and the surface radii at each axial 

location can be calculated as rx = ax + sfx and r, = a2 + sf2, where S is a small number. By setting the 

problem in this way, Sanz and Meseguer [15] arrive at a fourth order algebraic equation for the growth 
rate 0) that generates four roots for each value of the wave-number k . Also, they obtain an equation 

relating fx and f-, to each other and given by amplification factor 

A-^- 
fl a\lai 

+ • 
lor 

-(k4-k2) implying that the disturbances on each interface can be 

either in phase, when A > 1, which is termed as stretching mode of flow disturbances, or out of phase, 
when A < 1, termed as squeezing mode. These two modes are shown on Figure 2 of [6]. However, Sanz 
and Meseguer [15] demonstrate that the majority of compound jet disturbances propagate in phase 

with A > 1 . Next, giving the temporal development of the radii of both interfaces by rx = ax — sfxe"" 

and r, = a, — £f7e"" they investigate the cases when one of them vanishes, while the other retains a finite 

value, or the case when A", = r2 ^ 0 which happens once the free surface touches the interface. All three 

cases are qualitatively shown on Figure 7a-c of [13]. The instance when either of the jets reaches the axis of 
symmetry is defined as the breakup. From comparing the times of breakup of both jets Sanz and Meseguer 
[15] draw conclusions about which one of them breaks first. 

Chaunan and Maldarelli [5] are using momentum and continuity equations that are represented in 

Dv 
the nondimensional form as B  '- = —S/P and V • v = 0 , where B are the nondimensional density 

' Dt 
ratios. This system of equations is then converted into Fourier-Laplace domain to solve for the velocities 

00 

and surface deformations, by using the Fourier-Laplace transforms f \k) =     f(z)e '  dz 
-r 

CO _ 

and/(5) = \f{t)e~s'dt . Then, the pressure is found to be given by P - AlI0(kr)+ B^^^kr), which 
o 

causes the Bessel's functions to emerge in the solution. Next, the solution is inverted back into the time and 
space domain going through the procedure of converting the Fourier-Laplace line integrals into Bromwich 
contour integrals. Finally, their dispersion equation is given by det(a) = 0 , where a is a size 4 matrix 

with elements containing wave-number k , growth rate S , and Bessel's functions. Also, the surface 
distortions are given as functions of a and initial conditions, which are not proportional to each other. 
Similarly to the work by Sanz and Meseguer [15], their dispersion equation generates two pairs of 
symmetric S roots for each k value, two of which are negative, and the other two positive. The positive 
roots lead to the occurrence of stretching and squeezing modes shown on Figure 5 of their paper [5]. 
Chaunan and Maldarelli [5] show that the stretching mode is possible for wavelengths greater than the 
inner jet circumference, whereas the squeezing mode exists for wavelengths greater than the outer jet 
circumference, while the stretching mode growth rates are larger than the squeezing mode growth rates for 
all wavelengths. If we consider that the disturbances with larger growth rates prevail, then this is in 
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agreement with the conclusion of Sanz and Meseguer [15] declaring that most of the compound jets have a 
stretching mode of motion. Subsequently, they conclude that if the compound jet breaks up similarly to a 

single jet when the disturbances correspond to knm andsniax, the stretching mode will make the inner jet 

break first, thus generating drops of inner liquid inside the outer, followed by the breakup of the outer jet. 
This reasoning implies that this mode is responsible for the creation of clusters of inner liquid drops in the 
outer liquid segments as seen in practice and described above. 

In contrast to these works, in this study, which is linear as well, we use the potential flow 

d<j>j     rdpj     1 
equations V"^  = 0 and——+   —— H—Vtf>. • V0. — G = F{t) which allow for radial movement of 

liquids [7]. Also, the surface deformations T]{ and 7]2 are calculated to be directly proportional to each 

other, as will be shown below. This means that the disturbances are assumed to be strictly in phase and 
moving in stretching mode. This is in good agreement with the fact that the compound jets tend to this type 
of mode, as explained above. Application of the normal mode analysis to these equations yields the 
solution also involving Bessel's functions as in [5] but does not require the mechanism of forward and 
backward Fourier-Laplace transforms. The dispersion relation obtained is a second order algebraic equation, 
producing only two growth rates for each respective disturbance wavelength, where the positive and real 
one is selected for instability analysis. The jet breakup is considered as a situation when the disturbance 
with maximum growth rate is applied, following Rayleigh's approach. In this study we are interested in the 
breakup of the outer liquid only, which characterizes the breakup of the compound jet as a whole. Since the 
stretching mode is assumed, the outer liquid drops will contain some amount of inner liquid drops. The 
outer liquid drop sizes are evaluated by assuming that the drop volume is equal to the volume of cylindrical 
segment having length equal to the wavelength of the most unstable disturbance. Taken all together, this 
methodology allows making fast preliminary analysis of the compound jet stability behavior. On the other 
hand, due to the lack of two additional roots, this algorithm lacks the ability to explicitly predict the type of 
mode of disturbances (stretching or squeezing), or which of the jets will break up first. Next, because of 
neglected viscosity, the influence of viscosity ratios on stability is not assessed. Lastly, owing to the linear 
character of this study, the formation of satellite droplets can not be assessed. 

Numerous publications on compound jets, such as [13], [16], [6], and [1], take the viscosity of 
liquids into account and provide detailed investigation of how the variation of density, surface tension, and 
radius ratios affects the jet instability. To illustrate the diversity of the methods employed to compute the 
compound jets, some of the flow equations of these authors and the approaches they used to solve them are 
shown here. Radev and Tchavdarov [13] use the linearized fluid motion equations in the form 

du.        du. 1 ju,    , 
—- + U—- = Vp. +—-V «. and V-tt. =0 , where U is the bulk jet speed and /J. the 
dt dz        Pj p. 

viscosity. Then, applying the boundary conditions they end up with an eigenvalue problem for the Orr- 

Sommerfeld equation/or Re, (l — C)(L —a' W  =—-—(L-a'J  <f>} which is solved numerically to 

get the dispersion relation. Shkadov and Sisoev [16] employ Navier-Stokes equations, including gravity, as 
governing equations for the compound jet flow. They rewrite the linearized governing equations and 

boundary conditions in terms of the new variables w, = u , w, = —IV, vv3 = rjp, and vv4 = fju' . To get 

the dispersion relation, the resulting problem is solved numerically by assuming that these variables can be 

represented by a series of the form WjA* = /^ w*(Bvm)'7'" > where/: = l,...,4andw =1,2. Chaunan and 
m=0 

Maldarelli [6] in their paper for viscous compound jets also use Navier-Stokes equations for the flow 
description, where the velocities are expressed through the stream function as 

1 5T, 1 &¥, 
Ui — and w = . The governing equations and boundary conditions are converted again 

r  dz r  dr 
into Fourier-Laplace domain to obtain the equation 
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for T, (r) = A,rlx (kr) + BirK] (kr) + Dtrlx (/?,r) + E,rK] (j3,r) , where k is the wave number and 

P- is the term depending on viscosity. The dispersion relation is then represented by an 8 by 8 matrix 

equation. Afterwards, it is transformed back into time and space domain. Bian and Mashayek [1] developed 
a one-dimensional nonlinear numerical model for the viscous compound jet simulations, where they are 
able to accurately track the liquid surface evolution of both jets. The flow equations are solved by utilizing 
the spectral method. In addition to previous authors, they provide the sizes of main and satellite drops 
occurring at different property ratios of the two liquids. 

Assumptions 
In experiment by Hertz and Hermanrud [9], both jets were injected at constant flow rates. Some 

distance far from the nozzle, the flow became laminar and one-dimensional with a negligible mixing at the 
interface between two liquids, and the liquids acquired approximately same velocity equal to the bulk 
velocity of the compound jet denoted here as U . This flow behavior continued until the moment when 
disturbances grew to large magnitudes. Hence, to model the jet, we can consider infinitely long, immiscible 

liquid columns of radii fit, and Ct2 > laminar, axial, steady base flow, and choose a frame of reference 

moving with speed U that is represented by the cylindrical coordinate system having radial and axial 
coordinates r and z respectively. This allows us to operate with merely perturbed flow velocities and 
pressures instead of dealing with the total ones in our calculations. Following the reasoning on instability of 
Drazin and Reid [8] for the Reynolds's experiment on the pipe flow, we can assume that in the experiment 
by Hertz and Hermanrud [9], the disturbances to both liquids were essentially caused by imperfections of 
the nozzle wall or by small flow rate fluctuations, which permits us to assume that the magnitudes of 
velocity or liquid surface disturbances are small. Historically, beginning with Rayleigh [14], they were 
treated as sinusoidal, which is also the case for this study. For the case of a single jet, Rayleigh [14] 
concluded that the most unstable disturbances are axisymmetric. Thinking of each interface of the 
compound jet as a free surface of a single jet of corresponding size, we will similarly consider that the 
disturbances and the resulting flow are axisymmetric and the flow parameters may depend on r , z and 
time/. Chandrasekhar [4] (Figure 129) showed that for single jets, compared to the inviscid flow case, the 
presence of viscocity decreases the growth rates and most unstable wave numbers of disturbances, but the 
qualitative dependence of them from each other does not change. Taking this into account, we limit the 
scope of this study to an inviscid case. Lighthill [12] shows that in the system with only small disturbances 
to the flow field, the vorticity does not change with time. Then, since we initially postulate inviscid flow, 

we can assume that the flow remains irrotational for all time and introduce the velocity potentials (#, 

and^ [7]. In the experiments by Hertz and Hermanrud [9] the flow remained laminar in the range of 

compound jet speeds U from 5 to 40 m/s, which are high enough to neglect forces associated with gravity, 
though not sufficient to cause large aerodynamic drag. For the sake of simplicity, the ambient medium is 

treated as quiescent vacuum gas with zero density p  . Hence, we can neglect any other body forces, 

except equilibrium forces due to inertia and pressure gradients. Since the flow disturbances are small, the 
capillary speeds of disturbances are lower than the compound jet velocity. As Keller, Rubinow, and Tu [11] 
have shown, this fact along with the choice of the frame reference described above allows us to limit the 
instability analysis in this study to the temporal case. Observing that U were much smaller than speed of 
sound and supposing that the liquids of the compound jet retained constant densities in the base flow, we 
can consider incompressible flow overall. Rayleigh [14] has shown that the disturbance with maximum 
growth rate dominates over others. Thus, we can assume that the jet breaks up into liquid segments only 
when such most unstable disturbance has developed and the jet oscillates with the frequency equal to the 
frequency of this disturbance. 

Governing equations 
Consider an axial location where small, in phase surface disturbances are introduced, Figure 1. 

This causes the inner interface to be raised to the new level 7]] above a, and the outer free surface to be 
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raised to the new level 7]-, above a-,. Then, the cross-sectional area of the inner jet is changed 

by dA{ =;n(a1+77|)   — as I which is approximately equal to 

dAx =2^a^ (1.1) 

The area change of the outer jet is dA2 = 711 (a2 + T]2)  — Oj I — 7t I ( a, + TJ{)  — a," ) . It is counted 

from T]i since the inner interface is already deflected, and can be approximated by 

dA2 = 2TT(a27]2 -a^) (1.2) 

Since the surface deformations are assumed to be small, then we can assume that 

dAx=dA2 (1.3) 

After combining equations( 1.1), (1.2) and (1.3), we get a relation between surface elevations of the upper 
and inner liquid 

7, =2 — 7, (1-4) 
a2 

This shows that the surface elevations 77, and ?]•, are proportional to each other, which allows to assume 

stretching mode of the disturbance propagation. 
Consider the fluid motion along the inner interface and the outer free surface where the points have 

radial coordinates r = ai + Vji, where / = 1,2 are the indices denoting each interface. Conservation of mass 

equations for the perturbed incompressible, axisymmetric flow in the cylindrical coordinate system moving 

du.      15/       x 
with bulk compound jet speed are given by—— H 1 rv   1 = 0, where j = 1,2 are the indices 

dz      r r>v      ' 
denoting each liquid. Assuming irrotational flow and introducing the disturbance velocity potentials for two 

liquids by u   =  and V  =  [7], we can rewrite these equations as 
dz dr 

8%    id+j    SV, 
—r + - + —f = 0 (1.5) 
dz       r dr      dr 

We can use the unsteady Bernoulli equation h 1—V0[J70-G = F(t) to describe the 
dt     J p     2 

irrotational motion of a fluid particle along the streamlines [7], in this case the inner interface and the outer 
free surface. If we neglect the body forces G and absorb the time constant F(t) into <f), this equation 
provides the dynamic boundary conditions for both interfaces 

d<b.     rdp.     1 

dt     J Pj     2 

where the pressure integrals represent the change between current and initial pressures \dp   = p  — P.. 

When the flow is undisturbed, the surface curvatures are equal to the initial jet radii. Thus, the initial and 
current interfacial pressure jumps can be written as follows: 

Inner interface P\ — P2 =— p]—p1=(7]Kl (1.7) 
a\ 

Free surface Pi ~ P„ = —— p-,-p   =a7K^ (1.8) 
a2 

The corresponding axisymmetric surface curvatures [17] can be found as 
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S2 (fl,+i7() 

£.= 

(fl,+'7l) 1 + 
'd(al+j],) 

-.] 
(1.9) 

& 
1 + 

d(a,+/7,) V 

r_- 

The condition that a fluid particle at the interface will remain on interface for all time serves as kinematic 
boundary condition [7]. In axisymmetric case, for two liquids we have 

—- = —- +—'—,J- (1.10) 
dr      dt      dz   dz 

The system of equations(1.5)-(1.10) poses a nonlinear problem that is hard to solve. However, 

drji 
since the surface disturbances T]i are small, the amplitude of motion and surface slopes  are small as 

dz 
well. Assuming that the disturbance frequencies are not high, we can suppose that the velocity disturbances 

U: = and V   = —- are small as well. Hence, this problem can be solved by linearization around 1     dz '     dr 
points with radial coordinates r = ar In this case, the derivatives in equations( 1.5)-( 1.10) can be expanded 

in Taylor series around points r = a,, and only the first order terms can be retained since all other terms are 

products of higher order derivatives with small quantities TJi, 

dp2K '    dp1 v     '   ;     ' dp1 y     " ' dplK ' 
where P can be r or z [7]. Then, the linearized continuity equations at r = ai are given by 

ay,   id+j   ay 
•+• •+• = 0 

d^_ 

dz1     r dr      dr2 

Neglecting V^GV^y in (1.6) as a sum of squares of small quantities of the form 

boundary conditions can be rewritten as 

d</>. 
P — = P -P P>   dt '       •' 

At the inner interface and the outer free surface the subtraction of these equations gives 

d^,      __ d(j>2 

(1.11) 

, the dynamic 

At r - a, + 77, 

At r = a2 +1]2 

"IT** [p,-p,)-(p,-p,) 

A£-'.7H'.-'.MA-'.) 

(1.12) 

(1.13) 

In the expression for curvatures (1.9) we can assume thatl D 
djl 

dz 
and keeping terms up to first order 

terms in the binomial expansion 
1 

(a,+tj,)    a,    a) 
+ ..., we can simplify them to 
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at    ai      dz 
Next, plugging (1.7), (1.8) into (1.12), (1.13) respectively, using (1.14), and assuming quiescent vacuum 

gas for the ambient with (f)   = 0,p   — 0 , we arrive at the linearized dynamic boundary conditions for the 

inner interface and the outer free surface written respectively as follows: 

dfr     _ d<j>2 

(1.14) 

At r = a, 

At r = a. 

"<-&-* B, 
= <T, 

f a2      \ 

v a~     dz' 
(1.15) 

Pi 
ct 

= cr 
f -,2       \ rj2 +d JJ2 

vaj     dz 
(1.16) 

Neglecting terms in (1.10) as products of small quantities gives the linearized kinematic 
dz   dz 

boundary conditions 

At r = a 
dfa     d<t>2     5/7, 

(1.17) 
dr      dr       dt 

These conditions also reflect the fact that the vertical velocity components of two liquids meeting at the 
boundary should be equal. 

This study assumes flow disturbances have sinusoidal shape and grow only temporally [11], 

Because of that, they can be represented as Fourier waves <j)  = F (r)exp(a)t + ikzj in order to solve the 

system of equations(l.l 1), (1.15)-(1.17). Plugging them into continuity equation (1.11) results in Bessel's 
equation for the unknown function of the radius F.(r) 

, d2F, (r)      dF, (r)      , .     . . 

dr2 dr /W 

For each liquid this equation gives a solution in terms of Bessel's functions 

Ft(r) = C\''/„ (kr) + C2K0 (kr) , where C\J' and C2    are unknown constants to be defined for 

each liquid. Disturbances should vanish at the jet axis, therefore C\    must be zero since lim KQ(kr) = oo . 
r-»0 

After that, the velocity potentials can be rewritten as 

For0<r<a, <j)x =C(^I0(kr)exp(a>t + ikz) (1.18) 

Fora,<r<a2 t/>2 = (c\2)I0 (kr) + C(
2
)K0 (kr))exp(cot + ikz) (1.19) 

Similarly, due to sinusoidal shape and relation( 1.4), the surface deformations are given by 

At r = a, 77, = 770 exp(cot + ikz) 

a 
At r = a., r/2 = 2—L770 exp(&>/ + ikz) 

(1.20) 

(1.21) 

Substituting the velocity potential ^ (1.18) and surface deformation 77, (1.20) into the first kinematic 

boundary condition at r — a, (1.17) we get 

(1)_7()67    J_ 

k   I\(kci\) 

Plugging the velocity potential ^, (1.19) and surface deformation 77, (1.20) into the second kinematic 

boundary condition at r = a, (1.17) results in 

(1.22) 
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TJ0O) 

r(2)_ 
+ C\2>K](ka]) 

(1.23) 

Inserting the velocity potential ^2 (1.19) and surface deformation 77, (1.21) into the dynamic boundary 

conditional r = a2 (1.16) and using the recently obtained expression for C,    yields 

c(2) _     ^2  A.6* 

T]0col0(ka2) 

k   Ii(ka{) 

^(^)JT^T+KO(^) 

(1.24) 

(to,) 

Finally, after inserting both velocity potentials ^, (1.18), ^2 (1.19) and surface deformation 77, (1.20) into 

the dynamic boundary condition atr = #, (1.15), we obtain the intermediate expression relating all 

parameters of the problem 

pxco C,(,)/0(/:al)]-p2«[c,(2)/0(to,) + C«2^0(^,)] = 
a, 

-('*)" >7o 

Dispersion equation and drop size evaluation 
-(0   rW (2) Substituting of constants C,   , C,    and Ci    defined by equations (1.22)-( 1.24) into the last 

expression and rearranging results in the dispersion equation of the form 

co2 = k- 

-2* 
a-, 

1 

\a2 

-k2 

I) 
-<?, 

1 

va. 
•k2 

( 
A /4-5- 

V D A^ 

where the functions A, B, D, E are defined as follows: 

70(to,) 
A = 

7, (to,) 
B A) (fop 

(2.1) 

D = K,(to,)^^ + 7C0(to2)    £ = ^,(^)^T + /C0(^,) 
7, (to,) 7, (to,) 

Dispersion relation given by (2.1) provides two symmetric real roots when both numerator and 
denominator are simultaneously positive or negative. The positive root represents the growth rate CO that 

makes the disturbance grow in time as it moves with the bulk jet velocity U . In case when numerator and 
denominator have opposite signs the roots are complex and conjugate to each other, the disturbances are 
sinusoidal and stable, and do not grow in time. Because there are only two roots, this dispersion relation 
reflects the stability behavior of the compound jet as if it was one single jet with sizes equal to those of the 
outer jet. It can not provide information on the stability of inner and outer jets taken separately from each 
other as in [5] and [15]. 

Let us investigate the situation when the outer liquid is removed and the compound jet reduces to a 

single jet. The absence of the outer liquid implies thatp2 = 0,cr2 = 0, a, = a, . This causes the functions 

E 
A, B, D, E to simplify to A = B = — = 1. Consequently, the dispersion equation becomes 
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-o", 

6)2=k- 

-k2 

va> 
-pxA 

which is Rayleigh's equation for a single jet of radius ax [14], 

The dependence of positive growth rates from wave numbers does have a maximum at which the 
most unstable disturbance occurs. As was shown by Sanz and Meseguer [15] and Chaunan and Maldarelli 
[5], the assumption of stretching mode of disturbances implies that the inner jet always breaks up first 

followed by the breakup of the outer jet, which means that in this study the point \kmm, COmm ) corresponds 

to the breakup of the outer jet already containing the drops of inner liquid. Following Rayleigh's approach, 
we assume that the drops are formed at the crests of disturbance waves, moving with the period equal to the 

In 
wavelength /tmax = . Since the liquids of the compound jet are incompressible and disturbance waves 

*max 

develop from the initially undisturbed flow, the volume of the jet between crests is equal to the volume of 

undisturbed cylindrical jet segment having radius a2 and length Anaii. Assuming the liquid between crests 

is spent entirely to form a drop, because this model cannot account for the formation of smaller satellite 

drops, and that due to the surface tension on the free surface <T2 it will attain a spherical shape, we 

have;ra^/tmax = — 7trci which gives 

f6na^ 
4 k 

(2.2) 
max / 

and 

Nondimensionalization of equations (2.1) and (2.2) can be made by choosing a-, as length scale 

as time scale. The relation of dimensional wave numbers and growth rates to their piai 

cr, 

nondimensional values denoted by star is given by k = — and CO = CO 
P2a. 
a2   ) 

sV^ 
respectively. Let 

radius, surface tension, and density ratios be defined as 

a-, O, p, 

a, a-, p, 
Following that, the nondimensional form of the dispersion equation is given by 

(<0-)
!
=i-_a '-(*')' 

£_1 
ID    s o»-(*f 

D    d 
where the functions A, B, D, E are rewritten in the following form: 

(2.3) 

/„   * 
A = 

a B = 

_: 



D = K, 
a 

'.(*•) 

/. * a 

+ K0(k') E = K, 
iJk a 

"'.(*%) 

kl 
Likewise, given that rd = rda-, and k =   "iax , we can rewrite equation (2.2) as 

+K. 

'6   n * 
4 k V H *max J 

(2.4) 

Further in this study, the nondimensional quantities will be written without superscript *. 

Parametric study and comparison of results 
In this section the influence of radius CC , density d , and surface tension S ratios on the jet 

stability and on the drop sizes formed is investigated. 
Figures 2 and 3 show how the surface tension and radius ratios affect the jet stability and are 

compared to analogous Figures 8 and 10 of [5], showing same results plotted for the stretching mode of 

disturbances. The nondimensionalization scales used by Chaunan and Maldarelli [5] were a, for length and 

f 3 Y'2 

for time, while the radius, surface tension, and density ratios were defined in the same way as 

CC,S,d respectively. Let the growth rates and wave numbers nondimensionalized by their scaling factors 

be denoted by superscript C . Then, they are related to the same quantities in this study by 

«>, CO 

(da^ 

v   s   ) 
and kc = k — . Figures 2 and 3 are plotted with COc on the vertical axis and A'c on 

a 
the horizontal without showing superscript *. 

Figure 2 shows that, as the surface tension of the outer liquid increases, there is a general trend 
towards the lower most unstable wave numbers, or lower frequencies of the disturbances. Also, the range of 
unstable wavelengths becomes shorter. These tendencies can be explained by the fact that at higher 
frequencies the surface gets more deformed, thus causing higher curvatures and the resulting surface 
tension to act stronger and damp these high frequency oscillations. 
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Figure 2 Effect of surface tension ratio on stability variation with d = 1, OC = 2 . 
(Compare to Figure 8 of [5]) 

For the growth rate we can observe three types of behavior. The peak of the growth rates first 
decreases when S takes values from less than 1 up to 1.6 (some curves are not shown here), then stays 

approximately at the level equal to the peak of s = 2 curve, and finally increases for values 5 > 2 . This 

can be viewed in the following way. Since S is the ratio of surface tensions, then by fixing (T[ we increase 

<J2 as s gets larger. Next, we can represent the disturbances in the form <j>j = <j>j exp(<W/ + ikz) 

and/7/ = 77, exp(&>/ + ikz), where 0. depend on k and CO through equations (1.22)-( 1.24) , and we 

assume that f)   are fixed. Inserting them into the boundary conditions (1.15) and (1.16) we obtain 

At r = a, 

At r = a. 

°>{P\<i>\-p2<i>2) = cxA 
Vai 

cop2<f>2 = a2i)2 ±-e 
\a2 

(2.5) 

(2.6) 

Here the term p •(/)• implicitly characterizes the momentum of the liquid. In all three cases considered, 

km„ decreases while <T, increases. The first and second cases, where tf)   „ decreases and then stays 

nearly constant, are possible when p2</>-, grows, and p{<p{ grows faster than p2<f)^. The last case, where k 

decreases and 0)nax rises, is achievable when p,^, does not change much, and pjf)x grows. This means 

that, when both liquids have growing momentums, there is a net decrease of the most unstable growth rates, 
whereas, in the situation when only the inner liquid gains momentum, there is a net increase of the 
maximum growth rates. 

Comparing Figure 2 to Figure 8 of [5], we can see that their curves with S = 0.5,2 have one 

maximum growth rate, while the ones with S = 5,10 have two maximum growth rates. However, the peak 
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values are similar on both figures. On their figure, when S is increased from 0.5 to 2, the maximum growth 
rate decreases slightly without noticable change in the most unstable wave numbers, and, when s is 
increased from 5 to 10, the maximum on the right shifts toward lower growth rates and higher wave 
numbers, whereas, the maximum on the left shifts towards higher growth rates and lower wave numbers. 
Conclusively, except for the maximums on the right of the curves with 5 = 5,10, their curves have similar 

trends. 
Next, we consider the effect of the radius ratio variation on the jet stability (Figure 3). We can 

observe that at values of CC from 10 to approximately 4.5 (the curves with values of (X different from 
shown on Figure 3 are not illustrated) the peak of the growth rate decreases and shifts to lower wave 
numbers. Then, from (X » 4.5 XoOC « 2.5 the shifting to the left continues with the value of maximum 
staying at about 0.25. Finally, the peak starts to grow with moving towards higher wave numbers. 
Correspondingly, the range of unstable wave numbers first shortens, then widens. 

The observed phenomena can be interpreted as follows. When the radius ratio is high, the volume 
of the outer jet is much bigger, and its inertia dominates over the surface tension forces on both interfaces, 
which leads to high growth rates and wide range of unstable wave numbers. The decrease of its radius to 
a — 4..2.5 results in less volume and higher lateral curvatures, so that the surface tension on both 
interfaces starts to compete with inertia and decreases the growth rates and the wave number ranges. In 
contrast, when the growth rates start to grow atCC < 2.5, the inertia of the inner jet starts to be the 
prevailing factor. After that, the thinner the layer of the outer liquid becomes, the less resistance it poses for 
the inner jet to grow. Accordingly, the range of unstable frequencies also expands. Comparing Figure 3 to 
Figure 10 of [5], we can conclude that the growth rates behave in the same way, have similar peak values, 
but the range of unstable wave numbers on their figure does not change. 
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Figure 3 Effect of radius ratio on stability variation with d — 1, S — 2 . 
(Compare to Figure 10 of [5]) 

In order to evaluate the case when the density ratio is varied, we compare the results on Figure 4 
of this study to those on Figures 3 a, b, c of [15]. These figures show the distribution of the maximum 
growth rates for three different density ratios d = 0.5,1.0,2.0 respectively, where the surface tension 
ratio is fixed and the radius ratio changes, or vice versa. Sanz and Meseguer [15] use the same length and 
time scales, so the comparison can be made without converting the growth rates and wave numbers. 
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However, their ratio parameters are inverses of s,d,CC . Hence, we can choose one 

point (cr = 0.7, R = 0.7) on all of their three plots, equal to (5 = 1.4, or = 1.4) in our system, and 

compare the maximum growth rates and wave numbers at this point to those calculated in this study (Table 
1). This table shows good agreement between the maximum growth rates and growing discrepancy between 
the most unstable wave numbers for increasing density ratios. 

Table 1. Stability comparison of Fig.4 with Figs.3a,b,c of [ 15] at s = 1.4, a = 1.4 

Fig 4 Figs.3a,b,c of [15] 

y 
7 rtmax 

CO max 
1/ 
7k / /v max max 

d = 0.5 1.23 0.39 1.25 0.40 

d = \ 1.25 0.55 1.20 0.55 

d = 2 1.27 0.76 1.17 0.75 

Figure 4 shows increasing growth rates, as the density of the outer liquid increases when the inner 
liquid density is fixed, while the most unstable wave numbers move slightly to the left. In reality, the jet 
should be more stable, if the outer liquid becomes denser and heavier, since the flow disturbances have to 
move more mass. However, in this study, the time scale itself depends on the density ratio, and the relation 

between the dimensional and nondimensional growth rates can be rewritten as CO = CO 
' dpxa\ A 

where the factor 

(dP^y 
grows faster than CO . Thus, to examine the expected behavior, we can 

kg N 
choose, for example, px =1000—j,&\ =0.074—, and ax = 0.005/W and plot the dimensional 

m m 
growth rates and wave numbers (index dim)foT the same s,GC,d (Figure 5). On both figures (4 and 5) we 
can see that the range of unstable wave numbers almost does not change, which follows because there are 
no changes in radii or surface tensions leading to the damping of high frequencies. 
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Figure 4 Effect of density ratio on stability variation with 5 = 1 A,a 
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Figure 6 Maximum growth rates at varying surface tension and radius ratios for a = 1.. 10 . 
(Compare to Figure 3a of [15]) 

Analogous to Figure 3a of [15], we may plot a conclusive chart (Figure 6) containing the graphs of 

the maximum growth rates at different surface tension ratios given by <7 =   y     = y   , while each of 

them is calculated for the given range of radius ratios. After comparing these figures, we can see that the 
curves on Figure 6 with G = 0.7 and G = 0.3 have minima, while their curves with same G values do 
not. Their G = 0.3 curve lies lower and intersects the left axis at about 0.95. Next, their curves with 
G = 0.05 and G = 0.01 start with lower values on the left axis and terminate on the curve ABC 
indicating the region where no solution exists. On contrary, these last curves on our plot do continue until 
intersection with the right axis. 

Overall, the differences in results of this study when comparing to the works by Sanz and 
Meseguer or Chaunan and Maldarelli can be essentially attributed to the differences in dispersion relations 
and the roots that are generated from them. 

Next, we consider the influence of property ratios on the drop sizes based on (2.4) and compare 
the results to those on Figures 3 c, d, and e of [1]. Their nondimensional length and time scales and 
property ratios of the liquids are defined in the same way as in this study. 

On Figure 7, we can see that the drop radius increases slightly when the density ratio grows, 
regardless of the surface tension ratio, which is due to the effects shown on Figures 2 and 4. At d = 1 and 
a = 2 Figure 3c of [1] gives drop sizes ranging from 1.25 to 2.0. It is not a single number but a 
distribution of sizes because each wave number produces drops of certain size due to their nonlinear model. 
The lines for different values of S are almost coincident on their plot. On the contrary, in this study, we 
consider that drops are created only at the most unstable wave numbers. Thus, we can compare the drop 
sizes at the wave numbers equal to the most unstable ones and at d = 1 (Table 2). While their drop sizes 
are slightly smaller, there is acceptable agreement between them. 
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Figure 7 Effect of density ratio on drop sizes at fixed surface tension ratios with a = 2 
(Compare to Figure 3c of [1]) 

Table 2. Comparison of drop sizes of Fig.7 at d — 1 with Fig.3c of [1] 

max / 
/a 

rd (Fig.7) rd(Fig.3c[l]) 

5 = 0.1 0.66 1.52 wl.4 

5 = 2.0 0.50 1.67 »1.5 

5 = 10.0 0.39 1.82 *1.7 

As the surface tension ratio grows (Figure 8), we can observe a gradual increase in drop sizes at all 
density ratios. Similarly, calculating the most unstable wave numbers and drop sizes at 5 = 2 , we can 

compare this figure to Figure 3d (Table 3). Again, their curves for different d values almost overlap. Table 
3 shows that their drop sizes are smaller like in Table 2. This may be attributed to the fact that some of the 
liquid volume is spent on forming the satellite droplets, which can not be addressed in this study. 
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Figure 8 Effect of surface tension ratio on drop sizes at fixed density ratios with a — 2 

Table 3. Comparison of drop sizes of Fig.8 at 5 = 2 with Fig.3d of [1] 

k     / max / 
/a 

rd (Fig.8) rd(Fig.3d[l]) 

d = 0A 0.50 1.67 *1.5 

d = l.O 0.50 1.68 «1.5 

d = \0.0 0.44 1.75 *1.6 

On Figure 9, we can see that for small size ratios a = 1.5,2.0 the drop sizes vary appreciably, 

but as the size ratio becomes high they change a little. This means that the effect of larger thickness of the 
outer liquid dominates over changes in the surface tension. Accordingly, this behavior can be used in cases 
when the liquids are varied, but the desired size is expected to be almost same. On the other hand, high size 
ratios are not be used in printing or pharmacy, due to [2] and [9]. 

We can compare this figure to Figure 3e of [1] (Table 4). Table 4, in contrast, shows bigger and 
smaller drop sizes in their case. In a = 1.5 case, when the outer liquid radius is still comparable to the 
radius of the inner one, the bigger drop size on their figure can be explained from the point of view that 

more liquid is taken to form drop than there is in a cylindrical segment with length AmM . In the case where 

OC = 5, it was not clear from their Figure 3e which of the bottom curves has a = 5, and for Table 3 an 
asymptotic value of one of them at k = 3.28 was taken. For this case there is an appreciable difference in 
the drop sizes. 
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Figure 9 Effect of surface tension ratio on drop sizes at fixed radius ratios with d = 1 
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Table 4. Comparison of drop sizes of Fig.9 at S = 2 with Fig.3e of [1] 

*max rd (Fig.9) rrf(Fig.3c[l]) 

or = 1.5 0.80 1.81 «2.0 
a = 2.0 0.99 1.68 wl.5 

a = 5.0 3.28 1.13 w0.5 

Overall, the comparison of the drop sizes shows an acceptable agreement with the paper by Bian 
and Mashayek [1] within 15% difference. This may attributed to the fact that their model is nonlinear and 
takes viscosity into account. 

Conclusions 
In this study an inviscid linear model has been developed to analyse the temporal instability 

behavior of compound jets. The difference of this model in comparison with inviscid models of other 
authors is in the way the governing equations are setup and solved. In contrast to other works, the 
dispersion equation obtained here is a second order algebraic equation producing only two symmetric roots, 
which makes it simpler to use in computations. 

Based on Rayleigh's approach to evaluate the sizes of drops formed from a single jet, this study 
treats the breakup of the compound jet similar to that of a single jet. The breakup is assumed to occur at the 
most unstable wave number following from the dispersion equation. Since nonlinear effects are neglected, 
this study is not able to give information about the satellite drops formed. 

Due to simplified form of the dispersion equation and the method of the drop size evaluation this 
method provides means for quick preliminary analysis of compound jets, such as how fast will disturbances 
grow at certain frequencies, or what will be the approximate size of the main drops at the most unstable 
frequencies. 

The stability characteristics and drops sizes have been studied under varying radius, surface 
tension, and density ratios of two liquids comprising the compound jet. Overall comparison of the results of 
this study with those of other authors shows acceptable agreement for this type of analysis. 
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Nomenclature and subscripts 
a Radius of an undisturbed liquid surface 

I0 Bessel function of the first kind of order zero 

/, Bessel function of the first kind of order one 

K0 Bessel function of the second kind of order zero 

Kl Bessel function of the second kind of order one 

K Axisymmetric surface curvature 

k Wave number of disturbance 
p Current pressure of disturbed flow 

P Initial base flow pressure before disturbance 

Yd Drop radius 

Z, r Axial and radial coordinates 

U, V Axial and radial velocity of disturbance 

A Wavelength of disturbance 
CO Growth rate of disturbance 
p Liquid density 

O Surface tension at an interface between two fluids 

<j> Velocity potential of disturbance 

i Number of interface: 1-inner interface, 2-outer free surface 
j Fluid index: 1-inner liquid, 2-outer liquid, g-ambient gas 

max Most unstable disturbance 
Nondimensional quantity * 
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Appendix D - Modeling Dense Sprays Produced by Pressure-Swirl 
Atomizer - Parallel Processing Algorithm 

1. Parallel Processing 

1.1 Introduction to ScaLAPACK 

Assuming the Runge-Kutta time integration scheme described in Section 2.1, the BEM calculation 
requires the solution of the large-dense system of linear equations for four times at every time step. 
Computational cost on solving this matrix system is fairly expensive. Current BEM codes developed within 
the research group[l] have used LU decomposition and SOR(Successive Over Relaxation) to solve the 
large-dense matrix system. Although SOR has been a quite successive method for solving larger matrix 
systems(over 1000 nodes), it has not been fast enough to get the grid convergence for high Weber number 
jets. A small grid size has been required to ensure the exactitude of computation in this case, so that 
computational cost of BEM based on SOR has been quite high. Therefore, it has been necessary to modify 
the matrix system solver in BEM. 

The fully populated square matrix gives BEM codes a unique characteristic compared to the 
banded structure present in classical CFD codes. Classical CFD codes usually accomplish the acceleration 
by the use of sparse matrix inversion schemes and parallelization; dividing the computational domain into 
smaller matrices that are distributed to a set of CPUs. In addition, BEM atomization problems are 
distinguished by computational domains that increas with time, which yields different size matrix system at 
every time step. In addition, BEM matrices for fluids problems of this nature are generally poorly 
conditioned[l] , i.e. not diagonally dominant, thereby further complicating inversion processes. These 
issues make the matrix inversion in BEM fluids codes quite challenging. To improve performance of 
current codes, the ScaLAPACK utility was investigated as an aspect of the current work. 
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Scalable Linear Algebra Package (ScaLAPACK) is a set of library for distributed memory 
MIMD(Multiple Instruction stream, Multiple Data stream) parallel computers developed by the 
ScaLAPACK project[2] . ScaLAPACK provides routines for dense and band system of linear equations, 
linear least squares problems, and eigenvalue and singular value problems. One of the aims of 
ScaLAPACK project, 'portability', is achieved well so that it can run on any distributed memory computer 
using either MPI(Message Passing Interface) or PVM(Parallel Virtual Machine). 

To use ScaLAPACK, it is necessary to install several codes: MPI or PVM, BLAS(Basic Linear 
Algebra Subprograms), BLACS(Basic Linear Algebra Communication Subprograms), and 
LAPACK(Linear Algebra Package). The MPI is a standardized and portable set of library for message- 
passing on the parallel computers. The PVM is a set of software tools and libraries for concurrent or 
parallel computation on interconnected computers of varied architecture. The BLAS is a set of subroutines 
for basic linear algebra calculations. The BLACS are a message-passing library for linear algebra. Software 
hierarchy of ScaLAPACK is described in Fig. 1.1. 

ScaLAPACK provides driver routines, computational routines, and auxiliary routines. Driver 
routines are for solving standardized mathematical problems of matrix, e.g., linear system of matrix. It can 
be easily done by calling ScaLAPACK driver routines to achieve parallelization on the problem. 

^ ScaLAPACK 

Global 

Fig. 1.1 Software hierarchy of ScaLAPACK[2] 
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1.2 Specification of HPC(High-performance computing) cluster 

The performance of all parallelized computational algorithms depends not only on the 
organization of the algorithm but also on the specification and the parallel architecture of the computing 
machine. Typically all parallelized computational algorithm contains frequent data transmission between 
processors. The minimization of data transmission between processors is a way for increasing the 
performance of the algorithm. Furthermore, it is another way to use powerful computing machine for 
achieving significant reduction of actual code running time. All our current ScaLAPACK and BEM codes 
are running on our current HPC(High-performance computing) cluster. Hardware configuration of the HPC 
cluster is presented in Table. 1.1. Software used for ScaLAPACK and BEM calculation is presented in 
Table. 1.2. 

Table 1.1 Hardware configuration of current HPC cluster used for ScaLAPACK & BEM calculation 

Hardware Description Total 
Quantity 

CPU 
Head node 2.0 GHz AMD Opteron Quad Processor 1 

Computing nodes 2.4 GHz AMD Opteron Quad Processor 56 

Motherboard 
Head node HP ProLiant DL385 1 

Computing nodes HP ProLiant DL145 56 

Memory 
Head node 8 GB 

284 GB 
Computing nodes 13 nodes - 8GB, 43 nodes - 4 GB 

Storage 
Head node 1.2 TB 

5.7 TB 
Computing nodes 80 GB 

Switch 
HP ProCurve 5406zl (10 GB Interconnection support) 1 

HP ProCurve 5400zl (10 GB Interconnection support) 1 

NO 



Table 1.2 Software used for ScaLAPACK & BEM calculation 

Software Description 

Operating system RedHat Linux 7.2 

Fortran Compiler PGI Compiler 7.1-2 by Potland Group Cluster Development kit 

MPI MPICH2 1.0.5 

BLAS Implemented in Potland Group Cluster Development kit 

BLACS BLACS 1.1 patched 

LAPACK Implemented in Potland Group Cluster Development kit 

ScaLAPACK ScaLAPACK 1.8.0 

1.3 Dense System of Linear Equations Solver: PDGESV 

ScaLAPACK provides highly effective solver, which is called the subroutine PDGESV, for the 
dense system of linear equations. The typical linear system solver, LU-factorization algorithm, has been 
implemented in PDGESV, however, it has been modified for the parallel computing machine. The 
modification can be characterized by two parts; Block LU Factorization and Parallel LU Factorization. 

1.3.1 Block LU Factorization 
Typical LU Factorization is working with each component of the matrix. Instead of each 

component of the matrix, Block LU Factorization is working with the blocked submatrices from the 
original matrix. Fig. 1.2 shows a decomposition of 9 x 9 matrix with 3x3 block matrix in order to operate 
the Block LU Factorization. With more general notations, M x N global matrix and MB x NB block matrix, 
the decomposition gives the following submatrices: A\\ which is MB x NB, An which is MB x(N - NB), A2\ 
which is (M - MB) x NB, and A21 which is (M- MB) x(N- NB). 
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Fig. 1.2 9 x 9 matrix decomposition with 3x3 block matrix for Block LU Factorization 

The M x N global matrix can be thought as it decomposed into a lower triangular matrix L and an 
upper triangular matrix U as illustrated in Fig. 1.3. The matrices L and U are decomposed into submatrices 
with the same MB x NB block structure containing sub-matrices Ljj on the lower matrix and Uy on the upper 
matrix. Here, £,„ is MB x NB, L2l is (M - MB) x NB, L22 is (M- MB) x (N - /Vfl), t/,, is A/fl x NB, Un is 
M? x (N - NB), and t/22 is (N - MB) x (N - NB). It is possible to write equations between these submatrices 
in the global matrix matrix via standard linear algebra: 

A    =L   U 
II       II   II (i.D 

An = LnUu (1.2) 
A>rL,un (1.3) 

^ = L»Un + Li*UK (1.4) 



An ^12 

^21 ^22 

Ln 0 

^21 ^22 

^ii ua 

0 u22 

Fig. 1.3 Illustration of LU decomposition of global matrix with block matrix 

Using this methodology, the matrix inversion process can capitalize on LU factorization schemes. 
For the Block LU Factorization process, an LU decomposition based on Gaussian elimination including 
scaling and pivoting is performed on the first column panel of the global matrix, Au and A21. Once A\\ and 
A2\ are decomposed, Lu, Un, and L2\ are known. Then U]2 is computed using the equation (1.2) because 
A12 and Ln are known: 

U a y A 
(1.5) 

At this time, last work to find the whole of L and U matrix of the global matrix is to find matrices L22 and 
U2z Since A22 is not equal to L22U22, updating of the trailing matrix is required. Updated trailing submatrix 
A22 is computed: 

A' = A. -L    U 
21      12 (1.6) 

LU decomposition is applied again on the front column panel of A22 and the equation (1.5) is used again 
to update the front row panel of A22 . Using the equation (1.6), the trailing submatrix An' is updated. This 
step is depicted in Fig. 1.4. The decomposition of the primary global matrix is completed by repeating this 
step on the matrix followed by the completion of the step on the former matrix. 
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Fig. 1.4 Application of Block LU Factorization on the trailing submatrix 

1.3.2 Parallel LU Factorization 

While Block LU Factorization represents the work of LU factorization on only one CPU, Parallel 
LU Factorization represents the work of LU factorization with the data set distributed on a set of CPUs. 
Parallel LU Factorization contains frequent communication between CPUs, so that keeping the load 
balance between CPUs is a factor to affect the performance significantly. Choosing an appropriate data 
distribution scheme is important to keep load balance due to denseness of the matrix to be decomposed. 
The kind of data distribution scheme that will show greatest performance highly depends on the main 
algorithm. In the present study, 2-D block cyclic data distribution scheme has been selected as a 
distribution scheme for the parallel LU Factorization as ScaLAPACK project suggests it for the dense 
matrix[2]. They says that the effectiveness of 2-D block cyclic distribution of dense matrix is justified on 
the algorithm based on Gaussian elimination[2] so that we can easily see that 2-D block cyclic distribution 
can be a highly effective data distribution for LU factorization because it is based on Gaussian elimination 
operations. 

An example of 2-D block cyclic data distribution is described in Fig. 1.5. NPCOL and NPROiV 
represent the number of columns and the number of rows in the process grid consecutively. 9x9 global 
matrix is distributed on 2x3 processor grid with 2x2 block matrix and 5x4 maximum dimension of the 
matrix owned by any processor. 
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Fig. 1.5 2-D Block cyclic data distribution of 9x9 global matrix on 2x3 processor grid 

The procedure to get L and U matrix from the distributed global matrix A is same with the 
procedure outlined in section 1.3.1 for Block LU Factorization. The front column panel of the distributed 
global matrix, which size is M x NB, is decomposed using Gaussian elimination to find corresponding L 
and U. Using the equation (1.5) and (1.6), the front row panel and the trailing submatrix are updated. The 
difference with Block LU Factorization is that Parallel LU Factorization contains the communication 
between CPUs. The way to communicate and the number of communications depend on the algorithm. 
Most of communications occurred between processors in Parallel LU Factorization is the broadcast of data 
from a processor to other processors. Due to the characteristic of LU factorization, a current processor 
which sends data to other processors does not need to wait or receive data from processors. This is the 
reason that using the ScaLAPACK for the dense matrix on a set of CPUs shows better performance than 
running the LAPACK or running the ScaLAPACK on one CPU even though the main algorithm. Block LU 
Factorization, is applied on each case in the same way. This will be explained later. 

As a whole, Parallel LU Factorization can be divided into two parts; one is the operation of 
Gaussian elimination, another is updating process for the front row panel and the trailing submatrix. 
Communications contained in each part are summarized in Fig. 1.6 and Fig. 1.7. 
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Fig. 1.7 Broadcasting layout in the updating process for the front row panel and the trailing 
submatrix 
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